|
2023-10-14 01:17:01,167 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:17:01,168 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): BertModel( |
|
(embeddings): BertEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): BertEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): BertPooler( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=13, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-14 01:17:01,168 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:17:01,168 MultiCorpus: 7936 train + 992 dev + 992 test sentences |
|
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr |
|
2023-10-14 01:17:01,168 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:17:01,168 Train: 7936 sentences |
|
2023-10-14 01:17:01,168 (train_with_dev=False, train_with_test=False) |
|
2023-10-14 01:17:01,168 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:17:01,168 Training Params: |
|
2023-10-14 01:17:01,168 - learning_rate: "5e-05" |
|
2023-10-14 01:17:01,168 - mini_batch_size: "8" |
|
2023-10-14 01:17:01,168 - max_epochs: "10" |
|
2023-10-14 01:17:01,168 - shuffle: "True" |
|
2023-10-14 01:17:01,168 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:17:01,168 Plugins: |
|
2023-10-14 01:17:01,168 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-14 01:17:01,169 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:17:01,169 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-14 01:17:01,169 - metric: "('micro avg', 'f1-score')" |
|
2023-10-14 01:17:01,169 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:17:01,169 Computation: |
|
2023-10-14 01:17:01,169 - compute on device: cuda:0 |
|
2023-10-14 01:17:01,169 - embedding storage: none |
|
2023-10-14 01:17:01,169 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:17:01,169 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5" |
|
2023-10-14 01:17:01,169 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:17:01,169 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:17:06,714 epoch 1 - iter 99/992 - loss 1.86588415 - time (sec): 5.54 - samples/sec: 2785.36 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-14 01:17:12,449 epoch 1 - iter 198/992 - loss 1.09873625 - time (sec): 11.28 - samples/sec: 2794.75 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-14 01:17:18,387 epoch 1 - iter 297/992 - loss 0.80249953 - time (sec): 17.22 - samples/sec: 2794.10 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-14 01:17:23,944 epoch 1 - iter 396/992 - loss 0.64530064 - time (sec): 22.77 - samples/sec: 2826.21 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-14 01:17:29,847 epoch 1 - iter 495/992 - loss 0.54951004 - time (sec): 28.68 - samples/sec: 2818.40 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-14 01:17:35,860 epoch 1 - iter 594/992 - loss 0.47822528 - time (sec): 34.69 - samples/sec: 2821.08 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-14 01:17:41,757 epoch 1 - iter 693/992 - loss 0.43156759 - time (sec): 40.59 - samples/sec: 2802.37 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-14 01:17:47,720 epoch 1 - iter 792/992 - loss 0.39387496 - time (sec): 46.55 - samples/sec: 2794.11 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-14 01:17:53,595 epoch 1 - iter 891/992 - loss 0.36458290 - time (sec): 52.42 - samples/sec: 2790.26 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-14 01:17:59,691 epoch 1 - iter 990/992 - loss 0.34069275 - time (sec): 58.52 - samples/sec: 2792.26 - lr: 0.000050 - momentum: 0.000000 |
|
2023-10-14 01:17:59,900 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:17:59,900 EPOCH 1 done: loss 0.3399 - lr: 0.000050 |
|
2023-10-14 01:18:03,409 DEV : loss 0.09731486439704895 - f1-score (micro avg) 0.6696 |
|
2023-10-14 01:18:03,433 saving best model |
|
2023-10-14 01:18:03,828 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:18:09,534 epoch 2 - iter 99/992 - loss 0.12915040 - time (sec): 5.70 - samples/sec: 2665.74 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-14 01:18:15,365 epoch 2 - iter 198/992 - loss 0.11559230 - time (sec): 11.54 - samples/sec: 2704.02 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-14 01:18:20,960 epoch 2 - iter 297/992 - loss 0.11414920 - time (sec): 17.13 - samples/sec: 2751.32 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-14 01:18:26,882 epoch 2 - iter 396/992 - loss 0.10894772 - time (sec): 23.05 - samples/sec: 2761.13 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-14 01:18:32,637 epoch 2 - iter 495/992 - loss 0.10862939 - time (sec): 28.81 - samples/sec: 2806.00 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-14 01:18:38,576 epoch 2 - iter 594/992 - loss 0.10732068 - time (sec): 34.75 - samples/sec: 2812.77 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-14 01:18:44,413 epoch 2 - iter 693/992 - loss 0.10605689 - time (sec): 40.58 - samples/sec: 2814.76 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-14 01:18:50,172 epoch 2 - iter 792/992 - loss 0.10337874 - time (sec): 46.34 - samples/sec: 2810.16 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-14 01:18:56,347 epoch 2 - iter 891/992 - loss 0.10259994 - time (sec): 52.52 - samples/sec: 2799.94 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-14 01:19:02,162 epoch 2 - iter 990/992 - loss 0.10325477 - time (sec): 58.33 - samples/sec: 2802.95 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-14 01:19:02,321 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:19:02,321 EPOCH 2 done: loss 0.1032 - lr: 0.000044 |
|
2023-10-14 01:19:05,742 DEV : loss 0.09102991223335266 - f1-score (micro avg) 0.7377 |
|
2023-10-14 01:19:05,763 saving best model |
|
2023-10-14 01:19:06,277 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:19:11,924 epoch 3 - iter 99/992 - loss 0.06196304 - time (sec): 5.64 - samples/sec: 2675.30 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-14 01:19:17,975 epoch 3 - iter 198/992 - loss 0.06676977 - time (sec): 11.70 - samples/sec: 2774.34 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-14 01:19:23,503 epoch 3 - iter 297/992 - loss 0.07044537 - time (sec): 17.22 - samples/sec: 2780.26 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-14 01:19:29,407 epoch 3 - iter 396/992 - loss 0.07030135 - time (sec): 23.13 - samples/sec: 2755.93 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-14 01:19:35,437 epoch 3 - iter 495/992 - loss 0.06871568 - time (sec): 29.16 - samples/sec: 2793.45 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-14 01:19:41,277 epoch 3 - iter 594/992 - loss 0.07133824 - time (sec): 35.00 - samples/sec: 2795.31 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-14 01:19:47,157 epoch 3 - iter 693/992 - loss 0.07146656 - time (sec): 40.88 - samples/sec: 2803.67 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-14 01:19:53,718 epoch 3 - iter 792/992 - loss 0.07164041 - time (sec): 47.44 - samples/sec: 2769.56 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-14 01:19:59,430 epoch 3 - iter 891/992 - loss 0.07108609 - time (sec): 53.15 - samples/sec: 2765.26 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-14 01:20:05,167 epoch 3 - iter 990/992 - loss 0.07155895 - time (sec): 58.89 - samples/sec: 2778.37 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-14 01:20:05,297 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:20:05,298 EPOCH 3 done: loss 0.0715 - lr: 0.000039 |
|
2023-10-14 01:20:08,732 DEV : loss 0.11880763620138168 - f1-score (micro avg) 0.7402 |
|
2023-10-14 01:20:08,754 saving best model |
|
2023-10-14 01:20:09,277 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:20:15,188 epoch 4 - iter 99/992 - loss 0.04511134 - time (sec): 5.91 - samples/sec: 2964.60 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-14 01:20:20,986 epoch 4 - iter 198/992 - loss 0.04991613 - time (sec): 11.71 - samples/sec: 2885.57 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-14 01:20:26,705 epoch 4 - iter 297/992 - loss 0.05461873 - time (sec): 17.43 - samples/sec: 2874.60 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-14 01:20:32,606 epoch 4 - iter 396/992 - loss 0.05366870 - time (sec): 23.33 - samples/sec: 2832.04 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-14 01:20:38,619 epoch 4 - iter 495/992 - loss 0.05304821 - time (sec): 29.34 - samples/sec: 2819.86 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-14 01:20:44,603 epoch 4 - iter 594/992 - loss 0.05335391 - time (sec): 35.32 - samples/sec: 2795.76 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-14 01:20:50,230 epoch 4 - iter 693/992 - loss 0.05328344 - time (sec): 40.95 - samples/sec: 2791.28 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-14 01:20:55,778 epoch 4 - iter 792/992 - loss 0.05344227 - time (sec): 46.50 - samples/sec: 2806.23 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-14 01:21:01,258 epoch 4 - iter 891/992 - loss 0.05342411 - time (sec): 51.98 - samples/sec: 2812.25 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-14 01:21:07,289 epoch 4 - iter 990/992 - loss 0.05595410 - time (sec): 58.01 - samples/sec: 2821.18 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-14 01:21:07,456 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:21:07,456 EPOCH 4 done: loss 0.0559 - lr: 0.000033 |
|
2023-10-14 01:21:10,852 DEV : loss 0.1232018768787384 - f1-score (micro avg) 0.7481 |
|
2023-10-14 01:21:10,872 saving best model |
|
2023-10-14 01:21:11,360 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:21:17,069 epoch 5 - iter 99/992 - loss 0.03903289 - time (sec): 5.71 - samples/sec: 2900.52 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-14 01:21:22,768 epoch 5 - iter 198/992 - loss 0.03876095 - time (sec): 11.41 - samples/sec: 2924.11 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-14 01:21:28,419 epoch 5 - iter 297/992 - loss 0.04243056 - time (sec): 17.06 - samples/sec: 2890.32 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-14 01:21:34,101 epoch 5 - iter 396/992 - loss 0.03983144 - time (sec): 22.74 - samples/sec: 2898.00 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-14 01:21:39,707 epoch 5 - iter 495/992 - loss 0.03928814 - time (sec): 28.34 - samples/sec: 2904.32 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-14 01:21:45,374 epoch 5 - iter 594/992 - loss 0.03949960 - time (sec): 34.01 - samples/sec: 2907.48 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-14 01:21:50,895 epoch 5 - iter 693/992 - loss 0.04107109 - time (sec): 39.53 - samples/sec: 2888.93 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-14 01:21:57,000 epoch 5 - iter 792/992 - loss 0.04131385 - time (sec): 45.64 - samples/sec: 2875.31 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-14 01:22:02,977 epoch 5 - iter 891/992 - loss 0.04155687 - time (sec): 51.61 - samples/sec: 2853.04 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-14 01:22:08,801 epoch 5 - iter 990/992 - loss 0.04121265 - time (sec): 57.44 - samples/sec: 2850.10 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-14 01:22:08,913 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:22:08,913 EPOCH 5 done: loss 0.0413 - lr: 0.000028 |
|
2023-10-14 01:22:12,796 DEV : loss 0.16722512245178223 - f1-score (micro avg) 0.7586 |
|
2023-10-14 01:22:12,817 saving best model |
|
2023-10-14 01:22:13,338 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:22:19,723 epoch 6 - iter 99/992 - loss 0.03646699 - time (sec): 6.38 - samples/sec: 2714.64 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-14 01:22:25,276 epoch 6 - iter 198/992 - loss 0.03616235 - time (sec): 11.94 - samples/sec: 2798.79 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-14 01:22:30,923 epoch 6 - iter 297/992 - loss 0.03179580 - time (sec): 17.58 - samples/sec: 2799.10 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-14 01:22:36,766 epoch 6 - iter 396/992 - loss 0.03143445 - time (sec): 23.43 - samples/sec: 2811.42 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-14 01:22:42,630 epoch 6 - iter 495/992 - loss 0.03072024 - time (sec): 29.29 - samples/sec: 2815.34 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-14 01:22:48,259 epoch 6 - iter 594/992 - loss 0.03079986 - time (sec): 34.92 - samples/sec: 2818.20 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-14 01:22:54,316 epoch 6 - iter 693/992 - loss 0.03043770 - time (sec): 40.98 - samples/sec: 2799.34 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-14 01:23:00,319 epoch 6 - iter 792/992 - loss 0.02994022 - time (sec): 46.98 - samples/sec: 2790.61 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-14 01:23:06,471 epoch 6 - iter 891/992 - loss 0.03012561 - time (sec): 53.13 - samples/sec: 2787.05 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-14 01:23:12,180 epoch 6 - iter 990/992 - loss 0.03016026 - time (sec): 58.84 - samples/sec: 2782.11 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-14 01:23:12,291 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:23:12,291 EPOCH 6 done: loss 0.0301 - lr: 0.000022 |
|
2023-10-14 01:23:15,730 DEV : loss 0.17587369680404663 - f1-score (micro avg) 0.7538 |
|
2023-10-14 01:23:15,751 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:23:21,560 epoch 7 - iter 99/992 - loss 0.02680858 - time (sec): 5.81 - samples/sec: 2783.87 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-14 01:23:27,386 epoch 7 - iter 198/992 - loss 0.03036132 - time (sec): 11.63 - samples/sec: 2760.05 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-14 01:23:33,314 epoch 7 - iter 297/992 - loss 0.02504973 - time (sec): 17.56 - samples/sec: 2794.69 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-14 01:23:39,233 epoch 7 - iter 396/992 - loss 0.02602930 - time (sec): 23.48 - samples/sec: 2795.69 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-14 01:23:44,944 epoch 7 - iter 495/992 - loss 0.02459364 - time (sec): 29.19 - samples/sec: 2796.12 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-14 01:23:50,850 epoch 7 - iter 594/992 - loss 0.02499387 - time (sec): 35.10 - samples/sec: 2800.96 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-14 01:23:56,991 epoch 7 - iter 693/992 - loss 0.02457250 - time (sec): 41.24 - samples/sec: 2789.41 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-14 01:24:02,722 epoch 7 - iter 792/992 - loss 0.02502738 - time (sec): 46.97 - samples/sec: 2791.68 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-14 01:24:08,621 epoch 7 - iter 891/992 - loss 0.02451035 - time (sec): 52.87 - samples/sec: 2789.21 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-14 01:24:14,382 epoch 7 - iter 990/992 - loss 0.02379099 - time (sec): 58.63 - samples/sec: 2791.31 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-14 01:24:14,488 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:24:14,489 EPOCH 7 done: loss 0.0238 - lr: 0.000017 |
|
2023-10-14 01:24:18,294 DEV : loss 0.1903119683265686 - f1-score (micro avg) 0.7529 |
|
2023-10-14 01:24:18,315 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:24:24,188 epoch 8 - iter 99/992 - loss 0.01483288 - time (sec): 5.87 - samples/sec: 2925.75 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-14 01:24:29,964 epoch 8 - iter 198/992 - loss 0.01246495 - time (sec): 11.65 - samples/sec: 2854.69 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-14 01:24:35,622 epoch 8 - iter 297/992 - loss 0.01429814 - time (sec): 17.31 - samples/sec: 2821.25 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-14 01:24:41,814 epoch 8 - iter 396/992 - loss 0.01483730 - time (sec): 23.50 - samples/sec: 2813.76 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-14 01:24:47,786 epoch 8 - iter 495/992 - loss 0.01516838 - time (sec): 29.47 - samples/sec: 2816.87 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-14 01:24:53,786 epoch 8 - iter 594/992 - loss 0.01536659 - time (sec): 35.47 - samples/sec: 2816.83 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-14 01:24:59,378 epoch 8 - iter 693/992 - loss 0.01490078 - time (sec): 41.06 - samples/sec: 2828.30 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-14 01:25:05,215 epoch 8 - iter 792/992 - loss 0.01534412 - time (sec): 46.90 - samples/sec: 2812.41 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-14 01:25:11,007 epoch 8 - iter 891/992 - loss 0.01570233 - time (sec): 52.69 - samples/sec: 2806.90 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-14 01:25:16,688 epoch 8 - iter 990/992 - loss 0.01551159 - time (sec): 58.37 - samples/sec: 2805.59 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-14 01:25:16,785 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:25:16,785 EPOCH 8 done: loss 0.0155 - lr: 0.000011 |
|
2023-10-14 01:25:20,520 DEV : loss 0.20634520053863525 - f1-score (micro avg) 0.7621 |
|
2023-10-14 01:25:20,553 saving best model |
|
2023-10-14 01:25:21,058 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:25:26,647 epoch 9 - iter 99/992 - loss 0.01027848 - time (sec): 5.59 - samples/sec: 2895.54 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-14 01:25:32,581 epoch 9 - iter 198/992 - loss 0.01067700 - time (sec): 11.52 - samples/sec: 2883.19 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-14 01:25:38,714 epoch 9 - iter 297/992 - loss 0.01091812 - time (sec): 17.65 - samples/sec: 2834.44 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-14 01:25:44,463 epoch 9 - iter 396/992 - loss 0.01073457 - time (sec): 23.40 - samples/sec: 2805.81 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-14 01:25:50,371 epoch 9 - iter 495/992 - loss 0.01029950 - time (sec): 29.31 - samples/sec: 2807.06 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-14 01:25:56,117 epoch 9 - iter 594/992 - loss 0.01110924 - time (sec): 35.06 - samples/sec: 2815.10 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-14 01:26:02,160 epoch 9 - iter 693/992 - loss 0.01176843 - time (sec): 41.10 - samples/sec: 2792.15 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-14 01:26:08,166 epoch 9 - iter 792/992 - loss 0.01153996 - time (sec): 47.11 - samples/sec: 2796.98 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-14 01:26:13,818 epoch 9 - iter 891/992 - loss 0.01138962 - time (sec): 52.76 - samples/sec: 2798.37 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-14 01:26:19,543 epoch 9 - iter 990/992 - loss 0.01156023 - time (sec): 58.48 - samples/sec: 2796.42 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-14 01:26:19,696 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:26:19,696 EPOCH 9 done: loss 0.0115 - lr: 0.000006 |
|
2023-10-14 01:26:23,692 DEV : loss 0.2140767127275467 - f1-score (micro avg) 0.7623 |
|
2023-10-14 01:26:23,714 saving best model |
|
2023-10-14 01:26:24,211 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:26:30,251 epoch 10 - iter 99/992 - loss 0.00607883 - time (sec): 6.04 - samples/sec: 2911.03 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-14 01:26:36,244 epoch 10 - iter 198/992 - loss 0.00672977 - time (sec): 12.03 - samples/sec: 2833.64 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-14 01:26:41,831 epoch 10 - iter 297/992 - loss 0.00683740 - time (sec): 17.62 - samples/sec: 2791.38 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-14 01:26:47,746 epoch 10 - iter 396/992 - loss 0.00754100 - time (sec): 23.53 - samples/sec: 2795.11 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-14 01:26:53,622 epoch 10 - iter 495/992 - loss 0.00737902 - time (sec): 29.41 - samples/sec: 2800.18 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-14 01:26:59,458 epoch 10 - iter 594/992 - loss 0.00713022 - time (sec): 35.24 - samples/sec: 2791.65 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-14 01:27:05,247 epoch 10 - iter 693/992 - loss 0.00806298 - time (sec): 41.03 - samples/sec: 2793.59 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-14 01:27:11,236 epoch 10 - iter 792/992 - loss 0.00809314 - time (sec): 47.02 - samples/sec: 2792.23 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-14 01:27:16,908 epoch 10 - iter 891/992 - loss 0.00803018 - time (sec): 52.69 - samples/sec: 2806.21 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-14 01:27:22,660 epoch 10 - iter 990/992 - loss 0.00838705 - time (sec): 58.45 - samples/sec: 2800.71 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-14 01:27:22,767 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:27:22,767 EPOCH 10 done: loss 0.0084 - lr: 0.000000 |
|
2023-10-14 01:27:26,208 DEV : loss 0.22556838393211365 - f1-score (micro avg) 0.7641 |
|
2023-10-14 01:27:26,232 saving best model |
|
2023-10-14 01:27:27,131 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 01:27:27,132 Loading model from best epoch ... |
|
2023-10-14 01:27:28,425 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG |
|
2023-10-14 01:27:31,682 |
|
Results: |
|
- F-score (micro) 0.7925 |
|
- F-score (macro) 0.712 |
|
- Accuracy 0.6784 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
LOC 0.8363 0.8656 0.8507 655 |
|
PER 0.7336 0.8027 0.7666 223 |
|
ORG 0.5536 0.4882 0.5188 127 |
|
|
|
micro avg 0.7814 0.8040 0.7925 1005 |
|
macro avg 0.7078 0.7188 0.7120 1005 |
|
weighted avg 0.7778 0.8040 0.7901 1005 |
|
|
|
2023-10-14 01:27:31,682 ---------------------------------------------------------------------------------------------------- |
|
|