Upload ./training.log with huggingface_hub
Browse files- training.log +510 -0
training.log
ADDED
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-24 13:12:30,385 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-24 13:12:30,386 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-24 13:12:30,386 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-24 13:12:30,386 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
|
317 |
+
2023-10-24 13:12:30,386 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-24 13:12:30,386 Train: 5901 sentences
|
319 |
+
2023-10-24 13:12:30,386 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-24 13:12:30,386 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-24 13:12:30,386 Training Params:
|
322 |
+
2023-10-24 13:12:30,386 - learning_rate: "3e-05"
|
323 |
+
2023-10-24 13:12:30,386 - mini_batch_size: "8"
|
324 |
+
2023-10-24 13:12:30,386 - max_epochs: "10"
|
325 |
+
2023-10-24 13:12:30,386 - shuffle: "True"
|
326 |
+
2023-10-24 13:12:30,386 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-24 13:12:30,386 Plugins:
|
328 |
+
2023-10-24 13:12:30,387 - TensorboardLogger
|
329 |
+
2023-10-24 13:12:30,387 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-24 13:12:30,387 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-24 13:12:30,387 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-24 13:12:30,387 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-24 13:12:30,387 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-24 13:12:30,387 Computation:
|
335 |
+
2023-10-24 13:12:30,387 - compute on device: cuda:0
|
336 |
+
2023-10-24 13:12:30,387 - embedding storage: none
|
337 |
+
2023-10-24 13:12:30,387 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-24 13:12:30,387 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
|
339 |
+
2023-10-24 13:12:30,387 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-24 13:12:30,387 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-24 13:12:30,387 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-24 13:12:37,067 epoch 1 - iter 73/738 - loss 2.18161987 - time (sec): 6.68 - samples/sec: 2354.92 - lr: 0.000003 - momentum: 0.000000
|
343 |
+
2023-10-24 13:12:44,149 epoch 1 - iter 146/738 - loss 1.42985226 - time (sec): 13.76 - samples/sec: 2283.70 - lr: 0.000006 - momentum: 0.000000
|
344 |
+
2023-10-24 13:12:50,831 epoch 1 - iter 219/738 - loss 1.10599054 - time (sec): 20.44 - samples/sec: 2291.46 - lr: 0.000009 - momentum: 0.000000
|
345 |
+
2023-10-24 13:12:57,060 epoch 1 - iter 292/738 - loss 0.91769116 - time (sec): 26.67 - samples/sec: 2322.65 - lr: 0.000012 - momentum: 0.000000
|
346 |
+
2023-10-24 13:13:05,191 epoch 1 - iter 365/738 - loss 0.77452000 - time (sec): 34.80 - samples/sec: 2327.75 - lr: 0.000015 - momentum: 0.000000
|
347 |
+
2023-10-24 13:13:11,963 epoch 1 - iter 438/738 - loss 0.68331020 - time (sec): 41.58 - samples/sec: 2359.17 - lr: 0.000018 - momentum: 0.000000
|
348 |
+
2023-10-24 13:13:19,168 epoch 1 - iter 511/738 - loss 0.60818039 - time (sec): 48.78 - samples/sec: 2365.23 - lr: 0.000021 - momentum: 0.000000
|
349 |
+
2023-10-24 13:13:26,029 epoch 1 - iter 584/738 - loss 0.55818973 - time (sec): 55.64 - samples/sec: 2359.43 - lr: 0.000024 - momentum: 0.000000
|
350 |
+
2023-10-24 13:13:33,467 epoch 1 - iter 657/738 - loss 0.51160952 - time (sec): 63.08 - samples/sec: 2353.91 - lr: 0.000027 - momentum: 0.000000
|
351 |
+
2023-10-24 13:13:39,918 epoch 1 - iter 730/738 - loss 0.47724150 - time (sec): 69.53 - samples/sec: 2357.48 - lr: 0.000030 - momentum: 0.000000
|
352 |
+
2023-10-24 13:13:40,938 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-24 13:13:40,938 EPOCH 1 done: loss 0.4728 - lr: 0.000030
|
354 |
+
2023-10-24 13:13:47,154 DEV : loss 0.10554392635822296 - f1-score (micro avg) 0.7528
|
355 |
+
2023-10-24 13:13:47,175 saving best model
|
356 |
+
2023-10-24 13:13:47,725 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-24 13:13:54,266 epoch 2 - iter 73/738 - loss 0.13369869 - time (sec): 6.54 - samples/sec: 2400.65 - lr: 0.000030 - momentum: 0.000000
|
358 |
+
2023-10-24 13:14:01,134 epoch 2 - iter 146/738 - loss 0.13182120 - time (sec): 13.41 - samples/sec: 2353.28 - lr: 0.000029 - momentum: 0.000000
|
359 |
+
2023-10-24 13:14:07,956 epoch 2 - iter 219/738 - loss 0.13189987 - time (sec): 20.23 - samples/sec: 2362.32 - lr: 0.000029 - momentum: 0.000000
|
360 |
+
2023-10-24 13:14:14,726 epoch 2 - iter 292/738 - loss 0.12551263 - time (sec): 27.00 - samples/sec: 2339.53 - lr: 0.000029 - momentum: 0.000000
|
361 |
+
2023-10-24 13:14:21,473 epoch 2 - iter 365/738 - loss 0.12297520 - time (sec): 33.75 - samples/sec: 2346.93 - lr: 0.000028 - momentum: 0.000000
|
362 |
+
2023-10-24 13:14:28,306 epoch 2 - iter 438/738 - loss 0.12082661 - time (sec): 40.58 - samples/sec: 2341.88 - lr: 0.000028 - momentum: 0.000000
|
363 |
+
2023-10-24 13:14:35,634 epoch 2 - iter 511/738 - loss 0.12078839 - time (sec): 47.91 - samples/sec: 2359.93 - lr: 0.000028 - momentum: 0.000000
|
364 |
+
2023-10-24 13:14:43,365 epoch 2 - iter 584/738 - loss 0.11688290 - time (sec): 55.64 - samples/sec: 2357.67 - lr: 0.000027 - momentum: 0.000000
|
365 |
+
2023-10-24 13:14:50,105 epoch 2 - iter 657/738 - loss 0.11634259 - time (sec): 62.38 - samples/sec: 2356.32 - lr: 0.000027 - momentum: 0.000000
|
366 |
+
2023-10-24 13:14:57,762 epoch 2 - iter 730/738 - loss 0.11522082 - time (sec): 70.04 - samples/sec: 2349.93 - lr: 0.000027 - momentum: 0.000000
|
367 |
+
2023-10-24 13:14:58,512 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-24 13:14:58,512 EPOCH 2 done: loss 0.1151 - lr: 0.000027
|
369 |
+
2023-10-24 13:15:07,005 DEV : loss 0.09679369628429413 - f1-score (micro avg) 0.7871
|
370 |
+
2023-10-24 13:15:07,026 saving best model
|
371 |
+
2023-10-24 13:15:07,769 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-24 13:15:13,874 epoch 3 - iter 73/738 - loss 0.06119096 - time (sec): 6.10 - samples/sec: 2527.55 - lr: 0.000026 - momentum: 0.000000
|
373 |
+
2023-10-24 13:15:21,101 epoch 3 - iter 146/738 - loss 0.06385970 - time (sec): 13.33 - samples/sec: 2408.60 - lr: 0.000026 - momentum: 0.000000
|
374 |
+
2023-10-24 13:15:28,695 epoch 3 - iter 219/738 - loss 0.06608306 - time (sec): 20.93 - samples/sec: 2350.06 - lr: 0.000026 - momentum: 0.000000
|
375 |
+
2023-10-24 13:15:36,070 epoch 3 - iter 292/738 - loss 0.06260299 - time (sec): 28.30 - samples/sec: 2348.85 - lr: 0.000025 - momentum: 0.000000
|
376 |
+
2023-10-24 13:15:43,242 epoch 3 - iter 365/738 - loss 0.06272309 - time (sec): 35.47 - samples/sec: 2337.28 - lr: 0.000025 - momentum: 0.000000
|
377 |
+
2023-10-24 13:15:50,403 epoch 3 - iter 438/738 - loss 0.06424382 - time (sec): 42.63 - samples/sec: 2337.43 - lr: 0.000025 - momentum: 0.000000
|
378 |
+
2023-10-24 13:15:57,263 epoch 3 - iter 511/738 - loss 0.06412265 - time (sec): 49.49 - samples/sec: 2339.66 - lr: 0.000024 - momentum: 0.000000
|
379 |
+
2023-10-24 13:16:03,619 epoch 3 - iter 584/738 - loss 0.06489306 - time (sec): 55.85 - samples/sec: 2349.80 - lr: 0.000024 - momentum: 0.000000
|
380 |
+
2023-10-24 13:16:10,250 epoch 3 - iter 657/738 - loss 0.06455833 - time (sec): 62.48 - samples/sec: 2347.50 - lr: 0.000024 - momentum: 0.000000
|
381 |
+
2023-10-24 13:16:17,422 epoch 3 - iter 730/738 - loss 0.06554966 - time (sec): 69.65 - samples/sec: 2355.53 - lr: 0.000023 - momentum: 0.000000
|
382 |
+
2023-10-24 13:16:18,577 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-24 13:16:18,577 EPOCH 3 done: loss 0.0656 - lr: 0.000023
|
384 |
+
2023-10-24 13:16:27,094 DEV : loss 0.1195509284734726 - f1-score (micro avg) 0.8074
|
385 |
+
2023-10-24 13:16:27,115 saving best model
|
386 |
+
2023-10-24 13:16:27,857 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-24 13:16:34,341 epoch 4 - iter 73/738 - loss 0.03826326 - time (sec): 6.48 - samples/sec: 2323.82 - lr: 0.000023 - momentum: 0.000000
|
388 |
+
2023-10-24 13:16:40,745 epoch 4 - iter 146/738 - loss 0.03920578 - time (sec): 12.89 - samples/sec: 2352.56 - lr: 0.000023 - momentum: 0.000000
|
389 |
+
2023-10-24 13:16:47,380 epoch 4 - iter 219/738 - loss 0.04269634 - time (sec): 19.52 - samples/sec: 2347.37 - lr: 0.000022 - momentum: 0.000000
|
390 |
+
2023-10-24 13:16:53,782 epoch 4 - iter 292/738 - loss 0.03941502 - time (sec): 25.92 - samples/sec: 2350.87 - lr: 0.000022 - momentum: 0.000000
|
391 |
+
2023-10-24 13:17:01,518 epoch 4 - iter 365/738 - loss 0.04336450 - time (sec): 33.66 - samples/sec: 2339.39 - lr: 0.000022 - momentum: 0.000000
|
392 |
+
2023-10-24 13:17:09,372 epoch 4 - iter 438/738 - loss 0.04463978 - time (sec): 41.51 - samples/sec: 2330.02 - lr: 0.000021 - momentum: 0.000000
|
393 |
+
2023-10-24 13:17:17,052 epoch 4 - iter 511/738 - loss 0.04335848 - time (sec): 49.19 - samples/sec: 2333.73 - lr: 0.000021 - momentum: 0.000000
|
394 |
+
2023-10-24 13:17:24,654 epoch 4 - iter 584/738 - loss 0.04416947 - time (sec): 56.80 - samples/sec: 2342.98 - lr: 0.000021 - momentum: 0.000000
|
395 |
+
2023-10-24 13:17:31,897 epoch 4 - iter 657/738 - loss 0.04422596 - time (sec): 64.04 - samples/sec: 2338.84 - lr: 0.000020 - momentum: 0.000000
|
396 |
+
2023-10-24 13:17:38,254 epoch 4 - iter 730/738 - loss 0.04340328 - time (sec): 70.40 - samples/sec: 2341.64 - lr: 0.000020 - momentum: 0.000000
|
397 |
+
2023-10-24 13:17:38,892 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-24 13:17:38,893 EPOCH 4 done: loss 0.0434 - lr: 0.000020
|
399 |
+
2023-10-24 13:17:47,395 DEV : loss 0.14306315779685974 - f1-score (micro avg) 0.8255
|
400 |
+
2023-10-24 13:17:47,416 saving best model
|
401 |
+
2023-10-24 13:17:48,112 ----------------------------------------------------------------------------------------------------
|
402 |
+
2023-10-24 13:17:54,842 epoch 5 - iter 73/738 - loss 0.03252486 - time (sec): 6.73 - samples/sec: 2414.59 - lr: 0.000020 - momentum: 0.000000
|
403 |
+
2023-10-24 13:18:02,107 epoch 5 - iter 146/738 - loss 0.02695551 - time (sec): 13.99 - samples/sec: 2423.52 - lr: 0.000019 - momentum: 0.000000
|
404 |
+
2023-10-24 13:18:09,085 epoch 5 - iter 219/738 - loss 0.02469070 - time (sec): 20.97 - samples/sec: 2355.55 - lr: 0.000019 - momentum: 0.000000
|
405 |
+
2023-10-24 13:18:15,961 epoch 5 - iter 292/738 - loss 0.02799215 - time (sec): 27.85 - samples/sec: 2360.35 - lr: 0.000019 - momentum: 0.000000
|
406 |
+
2023-10-24 13:18:23,556 epoch 5 - iter 365/738 - loss 0.03089862 - time (sec): 35.44 - samples/sec: 2369.17 - lr: 0.000018 - momentum: 0.000000
|
407 |
+
2023-10-24 13:18:30,272 epoch 5 - iter 438/738 - loss 0.02992995 - time (sec): 42.16 - samples/sec: 2370.04 - lr: 0.000018 - momentum: 0.000000
|
408 |
+
2023-10-24 13:18:36,758 epoch 5 - iter 511/738 - loss 0.03020870 - time (sec): 48.65 - samples/sec: 2361.43 - lr: 0.000018 - momentum: 0.000000
|
409 |
+
2023-10-24 13:18:44,656 epoch 5 - iter 584/738 - loss 0.02894484 - time (sec): 56.54 - samples/sec: 2341.48 - lr: 0.000017 - momentum: 0.000000
|
410 |
+
2023-10-24 13:18:51,234 epoch 5 - iter 657/738 - loss 0.02917966 - time (sec): 63.12 - samples/sec: 2354.37 - lr: 0.000017 - momentum: 0.000000
|
411 |
+
2023-10-24 13:18:58,515 epoch 5 - iter 730/738 - loss 0.02891546 - time (sec): 70.40 - samples/sec: 2342.45 - lr: 0.000017 - momentum: 0.000000
|
412 |
+
2023-10-24 13:18:59,256 ----------------------------------------------------------------------------------------------------
|
413 |
+
2023-10-24 13:18:59,256 EPOCH 5 done: loss 0.0290 - lr: 0.000017
|
414 |
+
2023-10-24 13:19:07,778 DEV : loss 0.17278100550174713 - f1-score (micro avg) 0.8353
|
415 |
+
2023-10-24 13:19:07,800 saving best model
|
416 |
+
2023-10-24 13:19:08,554 ----------------------------------------------------------------------------------------------------
|
417 |
+
2023-10-24 13:19:15,847 epoch 6 - iter 73/738 - loss 0.02161928 - time (sec): 7.29 - samples/sec: 2358.73 - lr: 0.000016 - momentum: 0.000000
|
418 |
+
2023-10-24 13:19:21,872 epoch 6 - iter 146/738 - loss 0.02705650 - time (sec): 13.32 - samples/sec: 2391.93 - lr: 0.000016 - momentum: 0.000000
|
419 |
+
2023-10-24 13:19:28,868 epoch 6 - iter 219/738 - loss 0.02310291 - time (sec): 20.31 - samples/sec: 2372.71 - lr: 0.000016 - momentum: 0.000000
|
420 |
+
2023-10-24 13:19:36,807 epoch 6 - iter 292/738 - loss 0.02454477 - time (sec): 28.25 - samples/sec: 2397.80 - lr: 0.000015 - momentum: 0.000000
|
421 |
+
2023-10-24 13:19:43,311 epoch 6 - iter 365/738 - loss 0.02313850 - time (sec): 34.76 - samples/sec: 2387.53 - lr: 0.000015 - momentum: 0.000000
|
422 |
+
2023-10-24 13:19:49,707 epoch 6 - iter 438/738 - loss 0.02240292 - time (sec): 41.15 - samples/sec: 2378.88 - lr: 0.000015 - momentum: 0.000000
|
423 |
+
2023-10-24 13:19:55,818 epoch 6 - iter 511/738 - loss 0.02311644 - time (sec): 47.26 - samples/sec: 2369.82 - lr: 0.000014 - momentum: 0.000000
|
424 |
+
2023-10-24 13:20:02,974 epoch 6 - iter 584/738 - loss 0.02322732 - time (sec): 54.42 - samples/sec: 2367.98 - lr: 0.000014 - momentum: 0.000000
|
425 |
+
2023-10-24 13:20:10,794 epoch 6 - iter 657/738 - loss 0.02288665 - time (sec): 62.24 - samples/sec: 2368.39 - lr: 0.000014 - momentum: 0.000000
|
426 |
+
2023-10-24 13:20:18,200 epoch 6 - iter 730/738 - loss 0.02245972 - time (sec): 69.65 - samples/sec: 2364.74 - lr: 0.000013 - momentum: 0.000000
|
427 |
+
2023-10-24 13:20:18,854 ----------------------------------------------------------------------------------------------------
|
428 |
+
2023-10-24 13:20:18,855 EPOCH 6 done: loss 0.0223 - lr: 0.000013
|
429 |
+
2023-10-24 13:20:27,379 DEV : loss 0.1752229779958725 - f1-score (micro avg) 0.8311
|
430 |
+
2023-10-24 13:20:27,400 ----------------------------------------------------------------------------------------------------
|
431 |
+
2023-10-24 13:20:34,992 epoch 7 - iter 73/738 - loss 0.01696402 - time (sec): 7.59 - samples/sec: 2506.55 - lr: 0.000013 - momentum: 0.000000
|
432 |
+
2023-10-24 13:20:42,483 epoch 7 - iter 146/738 - loss 0.01606754 - time (sec): 15.08 - samples/sec: 2405.65 - lr: 0.000013 - momentum: 0.000000
|
433 |
+
2023-10-24 13:20:49,251 epoch 7 - iter 219/738 - loss 0.01446198 - time (sec): 21.85 - samples/sec: 2366.51 - lr: 0.000012 - momentum: 0.000000
|
434 |
+
2023-10-24 13:20:56,316 epoch 7 - iter 292/738 - loss 0.01432059 - time (sec): 28.91 - samples/sec: 2354.26 - lr: 0.000012 - momentum: 0.000000
|
435 |
+
2023-10-24 13:21:02,785 epoch 7 - iter 365/738 - loss 0.01467452 - time (sec): 35.38 - samples/sec: 2363.45 - lr: 0.000012 - momentum: 0.000000
|
436 |
+
2023-10-24 13:21:09,515 epoch 7 - iter 438/738 - loss 0.01528636 - time (sec): 42.11 - samples/sec: 2356.64 - lr: 0.000011 - momentum: 0.000000
|
437 |
+
2023-10-24 13:21:16,247 epoch 7 - iter 511/738 - loss 0.01555352 - time (sec): 48.85 - samples/sec: 2347.07 - lr: 0.000011 - momentum: 0.000000
|
438 |
+
2023-10-24 13:21:22,550 epoch 7 - iter 584/738 - loss 0.01567911 - time (sec): 55.15 - samples/sec: 2345.54 - lr: 0.000011 - momentum: 0.000000
|
439 |
+
2023-10-24 13:21:30,682 epoch 7 - iter 657/738 - loss 0.01546853 - time (sec): 63.28 - samples/sec: 2347.97 - lr: 0.000010 - momentum: 0.000000
|
440 |
+
2023-10-24 13:21:37,808 epoch 7 - iter 730/738 - loss 0.01529696 - time (sec): 70.41 - samples/sec: 2337.42 - lr: 0.000010 - momentum: 0.000000
|
441 |
+
2023-10-24 13:21:38,478 ----------------------------------------------------------------------------------------------------
|
442 |
+
2023-10-24 13:21:38,478 EPOCH 7 done: loss 0.0154 - lr: 0.000010
|
443 |
+
2023-10-24 13:21:47,007 DEV : loss 0.18594373762607574 - f1-score (micro avg) 0.8365
|
444 |
+
2023-10-24 13:21:47,028 saving best model
|
445 |
+
2023-10-24 13:21:47,720 ----------------------------------------------------------------------------------------------------
|
446 |
+
2023-10-24 13:21:54,425 epoch 8 - iter 73/738 - loss 0.00750537 - time (sec): 6.70 - samples/sec: 2238.98 - lr: 0.000010 - momentum: 0.000000
|
447 |
+
2023-10-24 13:22:01,617 epoch 8 - iter 146/738 - loss 0.00788359 - time (sec): 13.90 - samples/sec: 2269.45 - lr: 0.000009 - momentum: 0.000000
|
448 |
+
2023-10-24 13:22:08,824 epoch 8 - iter 219/738 - loss 0.00934315 - time (sec): 21.10 - samples/sec: 2322.77 - lr: 0.000009 - momentum: 0.000000
|
449 |
+
2023-10-24 13:22:16,377 epoch 8 - iter 292/738 - loss 0.01466951 - time (sec): 28.66 - samples/sec: 2371.90 - lr: 0.000009 - momentum: 0.000000
|
450 |
+
2023-10-24 13:22:22,773 epoch 8 - iter 365/738 - loss 0.01332356 - time (sec): 35.05 - samples/sec: 2373.74 - lr: 0.000008 - momentum: 0.000000
|
451 |
+
2023-10-24 13:22:30,133 epoch 8 - iter 438/738 - loss 0.01270781 - time (sec): 42.41 - samples/sec: 2367.04 - lr: 0.000008 - momentum: 0.000000
|
452 |
+
2023-10-24 13:22:36,550 epoch 8 - iter 511/738 - loss 0.01165258 - time (sec): 48.83 - samples/sec: 2364.33 - lr: 0.000008 - momentum: 0.000000
|
453 |
+
2023-10-24 13:22:43,352 epoch 8 - iter 584/738 - loss 0.01144850 - time (sec): 55.63 - samples/sec: 2364.87 - lr: 0.000007 - momentum: 0.000000
|
454 |
+
2023-10-24 13:22:50,962 epoch 8 - iter 657/738 - loss 0.01115597 - time (sec): 63.24 - samples/sec: 2359.28 - lr: 0.000007 - momentum: 0.000000
|
455 |
+
2023-10-24 13:22:57,811 epoch 8 - iter 730/738 - loss 0.01096523 - time (sec): 70.09 - samples/sec: 2347.47 - lr: 0.000007 - momentum: 0.000000
|
456 |
+
2023-10-24 13:22:58,511 ----------------------------------------------------------------------------------------------------
|
457 |
+
2023-10-24 13:22:58,512 EPOCH 8 done: loss 0.0109 - lr: 0.000007
|
458 |
+
2023-10-24 13:23:07,041 DEV : loss 0.20139646530151367 - f1-score (micro avg) 0.8427
|
459 |
+
2023-10-24 13:23:07,063 saving best model
|
460 |
+
2023-10-24 13:23:07,765 ----------------------------------------------------------------------------------------------------
|
461 |
+
2023-10-24 13:23:14,724 epoch 9 - iter 73/738 - loss 0.00257277 - time (sec): 6.96 - samples/sec: 2324.26 - lr: 0.000006 - momentum: 0.000000
|
462 |
+
2023-10-24 13:23:23,010 epoch 9 - iter 146/738 - loss 0.00730412 - time (sec): 15.24 - samples/sec: 2403.85 - lr: 0.000006 - momentum: 0.000000
|
463 |
+
2023-10-24 13:23:29,423 epoch 9 - iter 219/738 - loss 0.00609698 - time (sec): 21.66 - samples/sec: 2410.15 - lr: 0.000006 - momentum: 0.000000
|
464 |
+
2023-10-24 13:23:35,741 epoch 9 - iter 292/738 - loss 0.00544285 - time (sec): 27.98 - samples/sec: 2421.83 - lr: 0.000005 - momentum: 0.000000
|
465 |
+
2023-10-24 13:23:42,329 epoch 9 - iter 365/738 - loss 0.00635157 - time (sec): 34.56 - samples/sec: 2393.52 - lr: 0.000005 - momentum: 0.000000
|
466 |
+
2023-10-24 13:23:49,427 epoch 9 - iter 438/738 - loss 0.00672352 - time (sec): 41.66 - samples/sec: 2379.81 - lr: 0.000005 - momentum: 0.000000
|
467 |
+
2023-10-24 13:23:56,025 epoch 9 - iter 511/738 - loss 0.00663039 - time (sec): 48.26 - samples/sec: 2380.14 - lr: 0.000004 - momentum: 0.000000
|
468 |
+
2023-10-24 13:24:03,205 epoch 9 - iter 584/738 - loss 0.00714230 - time (sec): 55.44 - samples/sec: 2372.22 - lr: 0.000004 - momentum: 0.000000
|
469 |
+
2023-10-24 13:24:10,544 epoch 9 - iter 657/738 - loss 0.00737085 - time (sec): 62.78 - samples/sec: 2369.24 - lr: 0.000004 - momentum: 0.000000
|
470 |
+
2023-10-24 13:24:17,784 epoch 9 - iter 730/738 - loss 0.00770982 - time (sec): 70.02 - samples/sec: 2355.80 - lr: 0.000003 - momentum: 0.000000
|
471 |
+
2023-10-24 13:24:18,512 ----------------------------------------------------------------------------------------------------
|
472 |
+
2023-10-24 13:24:18,513 EPOCH 9 done: loss 0.0077 - lr: 0.000003
|
473 |
+
2023-10-24 13:24:27,038 DEV : loss 0.21205534040927887 - f1-score (micro avg) 0.8366
|
474 |
+
2023-10-24 13:24:27,060 ----------------------------------------------------------------------------------------------------
|
475 |
+
2023-10-24 13:24:34,370 epoch 10 - iter 73/738 - loss 0.00087160 - time (sec): 7.31 - samples/sec: 2298.01 - lr: 0.000003 - momentum: 0.000000
|
476 |
+
2023-10-24 13:24:40,795 epoch 10 - iter 146/738 - loss 0.00199352 - time (sec): 13.73 - samples/sec: 2346.39 - lr: 0.000003 - momentum: 0.000000
|
477 |
+
2023-10-24 13:24:47,446 epoch 10 - iter 219/738 - loss 0.00286730 - time (sec): 20.39 - samples/sec: 2358.58 - lr: 0.000002 - momentum: 0.000000
|
478 |
+
2023-10-24 13:24:54,218 epoch 10 - iter 292/738 - loss 0.00350713 - time (sec): 27.16 - samples/sec: 2358.90 - lr: 0.000002 - momentum: 0.000000
|
479 |
+
2023-10-24 13:25:01,059 epoch 10 - iter 365/738 - loss 0.00344795 - time (sec): 34.00 - samples/sec: 2340.08 - lr: 0.000002 - momentum: 0.000000
|
480 |
+
2023-10-24 13:25:07,969 epoch 10 - iter 438/738 - loss 0.00386173 - time (sec): 40.91 - samples/sec: 2319.16 - lr: 0.000001 - momentum: 0.000000
|
481 |
+
2023-10-24 13:25:14,691 epoch 10 - iter 511/738 - loss 0.00390650 - time (sec): 47.63 - samples/sec: 2328.71 - lr: 0.000001 - momentum: 0.000000
|
482 |
+
2023-10-24 13:25:21,256 epoch 10 - iter 584/738 - loss 0.00497431 - time (sec): 54.20 - samples/sec: 2330.43 - lr: 0.000001 - momentum: 0.000000
|
483 |
+
2023-10-24 13:25:28,442 epoch 10 - iter 657/738 - loss 0.00532116 - time (sec): 61.38 - samples/sec: 2357.16 - lr: 0.000000 - momentum: 0.000000
|
484 |
+
2023-10-24 13:25:36,894 epoch 10 - iter 730/738 - loss 0.00617810 - time (sec): 69.83 - samples/sec: 2357.54 - lr: 0.000000 - momentum: 0.000000
|
485 |
+
2023-10-24 13:25:37,571 ----------------------------------------------------------------------------------------------------
|
486 |
+
2023-10-24 13:25:37,572 EPOCH 10 done: loss 0.0061 - lr: 0.000000
|
487 |
+
2023-10-24 13:25:46,103 DEV : loss 0.2109983116388321 - f1-score (micro avg) 0.8403
|
488 |
+
2023-10-24 13:25:46,684 ----------------------------------------------------------------------------------------------------
|
489 |
+
2023-10-24 13:25:46,685 Loading model from best epoch ...
|
490 |
+
2023-10-24 13:25:48,551 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
|
491 |
+
2023-10-24 13:25:55,248
|
492 |
+
Results:
|
493 |
+
- F-score (micro) 0.7894
|
494 |
+
- F-score (macro) 0.6916
|
495 |
+
- Accuracy 0.6747
|
496 |
+
|
497 |
+
By class:
|
498 |
+
precision recall f1-score support
|
499 |
+
|
500 |
+
loc 0.8341 0.8846 0.8586 858
|
501 |
+
pers 0.7371 0.7989 0.7668 537
|
502 |
+
org 0.5547 0.5758 0.5651 132
|
503 |
+
time 0.5077 0.6111 0.5546 54
|
504 |
+
prod 0.7593 0.6721 0.7130 61
|
505 |
+
|
506 |
+
micro avg 0.7654 0.8149 0.7894 1642
|
507 |
+
macro avg 0.6786 0.7085 0.6916 1642
|
508 |
+
weighted avg 0.7664 0.8149 0.7896 1642
|
509 |
+
|
510 |
+
2023-10-24 13:25:55,249 ----------------------------------------------------------------------------------------------------
|