stefan-it commited on
Commit
5b29783
·
1 Parent(s): c306091

Upload ./training.log with huggingface_hub

Browse files
Files changed (1) hide show
  1. training.log +510 -0
training.log ADDED
@@ -0,0 +1,510 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-10-24 13:12:30,385 ----------------------------------------------------------------------------------------------------
2
+ 2023-10-24 13:12:30,386 Model: "SequenceTagger(
3
+ (embeddings): TransformerWordEmbeddings(
4
+ (model): BertModel(
5
+ (embeddings): BertEmbeddings(
6
+ (word_embeddings): Embedding(64001, 768)
7
+ (position_embeddings): Embedding(512, 768)
8
+ (token_type_embeddings): Embedding(2, 768)
9
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
10
+ (dropout): Dropout(p=0.1, inplace=False)
11
+ )
12
+ (encoder): BertEncoder(
13
+ (layer): ModuleList(
14
+ (0): BertLayer(
15
+ (attention): BertAttention(
16
+ (self): BertSelfAttention(
17
+ (query): Linear(in_features=768, out_features=768, bias=True)
18
+ (key): Linear(in_features=768, out_features=768, bias=True)
19
+ (value): Linear(in_features=768, out_features=768, bias=True)
20
+ (dropout): Dropout(p=0.1, inplace=False)
21
+ )
22
+ (output): BertSelfOutput(
23
+ (dense): Linear(in_features=768, out_features=768, bias=True)
24
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
25
+ (dropout): Dropout(p=0.1, inplace=False)
26
+ )
27
+ )
28
+ (intermediate): BertIntermediate(
29
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
30
+ (intermediate_act_fn): GELUActivation()
31
+ )
32
+ (output): BertOutput(
33
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
34
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
35
+ (dropout): Dropout(p=0.1, inplace=False)
36
+ )
37
+ )
38
+ (1): BertLayer(
39
+ (attention): BertAttention(
40
+ (self): BertSelfAttention(
41
+ (query): Linear(in_features=768, out_features=768, bias=True)
42
+ (key): Linear(in_features=768, out_features=768, bias=True)
43
+ (value): Linear(in_features=768, out_features=768, bias=True)
44
+ (dropout): Dropout(p=0.1, inplace=False)
45
+ )
46
+ (output): BertSelfOutput(
47
+ (dense): Linear(in_features=768, out_features=768, bias=True)
48
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
49
+ (dropout): Dropout(p=0.1, inplace=False)
50
+ )
51
+ )
52
+ (intermediate): BertIntermediate(
53
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
54
+ (intermediate_act_fn): GELUActivation()
55
+ )
56
+ (output): BertOutput(
57
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
58
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
59
+ (dropout): Dropout(p=0.1, inplace=False)
60
+ )
61
+ )
62
+ (2): BertLayer(
63
+ (attention): BertAttention(
64
+ (self): BertSelfAttention(
65
+ (query): Linear(in_features=768, out_features=768, bias=True)
66
+ (key): Linear(in_features=768, out_features=768, bias=True)
67
+ (value): Linear(in_features=768, out_features=768, bias=True)
68
+ (dropout): Dropout(p=0.1, inplace=False)
69
+ )
70
+ (output): BertSelfOutput(
71
+ (dense): Linear(in_features=768, out_features=768, bias=True)
72
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
73
+ (dropout): Dropout(p=0.1, inplace=False)
74
+ )
75
+ )
76
+ (intermediate): BertIntermediate(
77
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
78
+ (intermediate_act_fn): GELUActivation()
79
+ )
80
+ (output): BertOutput(
81
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
82
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
83
+ (dropout): Dropout(p=0.1, inplace=False)
84
+ )
85
+ )
86
+ (3): BertLayer(
87
+ (attention): BertAttention(
88
+ (self): BertSelfAttention(
89
+ (query): Linear(in_features=768, out_features=768, bias=True)
90
+ (key): Linear(in_features=768, out_features=768, bias=True)
91
+ (value): Linear(in_features=768, out_features=768, bias=True)
92
+ (dropout): Dropout(p=0.1, inplace=False)
93
+ )
94
+ (output): BertSelfOutput(
95
+ (dense): Linear(in_features=768, out_features=768, bias=True)
96
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
97
+ (dropout): Dropout(p=0.1, inplace=False)
98
+ )
99
+ )
100
+ (intermediate): BertIntermediate(
101
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
102
+ (intermediate_act_fn): GELUActivation()
103
+ )
104
+ (output): BertOutput(
105
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
106
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
107
+ (dropout): Dropout(p=0.1, inplace=False)
108
+ )
109
+ )
110
+ (4): BertLayer(
111
+ (attention): BertAttention(
112
+ (self): BertSelfAttention(
113
+ (query): Linear(in_features=768, out_features=768, bias=True)
114
+ (key): Linear(in_features=768, out_features=768, bias=True)
115
+ (value): Linear(in_features=768, out_features=768, bias=True)
116
+ (dropout): Dropout(p=0.1, inplace=False)
117
+ )
118
+ (output): BertSelfOutput(
119
+ (dense): Linear(in_features=768, out_features=768, bias=True)
120
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
121
+ (dropout): Dropout(p=0.1, inplace=False)
122
+ )
123
+ )
124
+ (intermediate): BertIntermediate(
125
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
126
+ (intermediate_act_fn): GELUActivation()
127
+ )
128
+ (output): BertOutput(
129
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
130
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
131
+ (dropout): Dropout(p=0.1, inplace=False)
132
+ )
133
+ )
134
+ (5): BertLayer(
135
+ (attention): BertAttention(
136
+ (self): BertSelfAttention(
137
+ (query): Linear(in_features=768, out_features=768, bias=True)
138
+ (key): Linear(in_features=768, out_features=768, bias=True)
139
+ (value): Linear(in_features=768, out_features=768, bias=True)
140
+ (dropout): Dropout(p=0.1, inplace=False)
141
+ )
142
+ (output): BertSelfOutput(
143
+ (dense): Linear(in_features=768, out_features=768, bias=True)
144
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
145
+ (dropout): Dropout(p=0.1, inplace=False)
146
+ )
147
+ )
148
+ (intermediate): BertIntermediate(
149
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
150
+ (intermediate_act_fn): GELUActivation()
151
+ )
152
+ (output): BertOutput(
153
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
154
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
155
+ (dropout): Dropout(p=0.1, inplace=False)
156
+ )
157
+ )
158
+ (6): BertLayer(
159
+ (attention): BertAttention(
160
+ (self): BertSelfAttention(
161
+ (query): Linear(in_features=768, out_features=768, bias=True)
162
+ (key): Linear(in_features=768, out_features=768, bias=True)
163
+ (value): Linear(in_features=768, out_features=768, bias=True)
164
+ (dropout): Dropout(p=0.1, inplace=False)
165
+ )
166
+ (output): BertSelfOutput(
167
+ (dense): Linear(in_features=768, out_features=768, bias=True)
168
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
169
+ (dropout): Dropout(p=0.1, inplace=False)
170
+ )
171
+ )
172
+ (intermediate): BertIntermediate(
173
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
174
+ (intermediate_act_fn): GELUActivation()
175
+ )
176
+ (output): BertOutput(
177
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
178
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
179
+ (dropout): Dropout(p=0.1, inplace=False)
180
+ )
181
+ )
182
+ (7): BertLayer(
183
+ (attention): BertAttention(
184
+ (self): BertSelfAttention(
185
+ (query): Linear(in_features=768, out_features=768, bias=True)
186
+ (key): Linear(in_features=768, out_features=768, bias=True)
187
+ (value): Linear(in_features=768, out_features=768, bias=True)
188
+ (dropout): Dropout(p=0.1, inplace=False)
189
+ )
190
+ (output): BertSelfOutput(
191
+ (dense): Linear(in_features=768, out_features=768, bias=True)
192
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
193
+ (dropout): Dropout(p=0.1, inplace=False)
194
+ )
195
+ )
196
+ (intermediate): BertIntermediate(
197
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
198
+ (intermediate_act_fn): GELUActivation()
199
+ )
200
+ (output): BertOutput(
201
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
202
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
203
+ (dropout): Dropout(p=0.1, inplace=False)
204
+ )
205
+ )
206
+ (8): BertLayer(
207
+ (attention): BertAttention(
208
+ (self): BertSelfAttention(
209
+ (query): Linear(in_features=768, out_features=768, bias=True)
210
+ (key): Linear(in_features=768, out_features=768, bias=True)
211
+ (value): Linear(in_features=768, out_features=768, bias=True)
212
+ (dropout): Dropout(p=0.1, inplace=False)
213
+ )
214
+ (output): BertSelfOutput(
215
+ (dense): Linear(in_features=768, out_features=768, bias=True)
216
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
217
+ (dropout): Dropout(p=0.1, inplace=False)
218
+ )
219
+ )
220
+ (intermediate): BertIntermediate(
221
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
222
+ (intermediate_act_fn): GELUActivation()
223
+ )
224
+ (output): BertOutput(
225
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
226
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
227
+ (dropout): Dropout(p=0.1, inplace=False)
228
+ )
229
+ )
230
+ (9): BertLayer(
231
+ (attention): BertAttention(
232
+ (self): BertSelfAttention(
233
+ (query): Linear(in_features=768, out_features=768, bias=True)
234
+ (key): Linear(in_features=768, out_features=768, bias=True)
235
+ (value): Linear(in_features=768, out_features=768, bias=True)
236
+ (dropout): Dropout(p=0.1, inplace=False)
237
+ )
238
+ (output): BertSelfOutput(
239
+ (dense): Linear(in_features=768, out_features=768, bias=True)
240
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
241
+ (dropout): Dropout(p=0.1, inplace=False)
242
+ )
243
+ )
244
+ (intermediate): BertIntermediate(
245
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
246
+ (intermediate_act_fn): GELUActivation()
247
+ )
248
+ (output): BertOutput(
249
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
250
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
251
+ (dropout): Dropout(p=0.1, inplace=False)
252
+ )
253
+ )
254
+ (10): BertLayer(
255
+ (attention): BertAttention(
256
+ (self): BertSelfAttention(
257
+ (query): Linear(in_features=768, out_features=768, bias=True)
258
+ (key): Linear(in_features=768, out_features=768, bias=True)
259
+ (value): Linear(in_features=768, out_features=768, bias=True)
260
+ (dropout): Dropout(p=0.1, inplace=False)
261
+ )
262
+ (output): BertSelfOutput(
263
+ (dense): Linear(in_features=768, out_features=768, bias=True)
264
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
265
+ (dropout): Dropout(p=0.1, inplace=False)
266
+ )
267
+ )
268
+ (intermediate): BertIntermediate(
269
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
270
+ (intermediate_act_fn): GELUActivation()
271
+ )
272
+ (output): BertOutput(
273
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
274
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
275
+ (dropout): Dropout(p=0.1, inplace=False)
276
+ )
277
+ )
278
+ (11): BertLayer(
279
+ (attention): BertAttention(
280
+ (self): BertSelfAttention(
281
+ (query): Linear(in_features=768, out_features=768, bias=True)
282
+ (key): Linear(in_features=768, out_features=768, bias=True)
283
+ (value): Linear(in_features=768, out_features=768, bias=True)
284
+ (dropout): Dropout(p=0.1, inplace=False)
285
+ )
286
+ (output): BertSelfOutput(
287
+ (dense): Linear(in_features=768, out_features=768, bias=True)
288
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
289
+ (dropout): Dropout(p=0.1, inplace=False)
290
+ )
291
+ )
292
+ (intermediate): BertIntermediate(
293
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
294
+ (intermediate_act_fn): GELUActivation()
295
+ )
296
+ (output): BertOutput(
297
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
298
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
299
+ (dropout): Dropout(p=0.1, inplace=False)
300
+ )
301
+ )
302
+ )
303
+ )
304
+ (pooler): BertPooler(
305
+ (dense): Linear(in_features=768, out_features=768, bias=True)
306
+ (activation): Tanh()
307
+ )
308
+ )
309
+ )
310
+ (locked_dropout): LockedDropout(p=0.5)
311
+ (linear): Linear(in_features=768, out_features=21, bias=True)
312
+ (loss_function): CrossEntropyLoss()
313
+ )"
314
+ 2023-10-24 13:12:30,386 ----------------------------------------------------------------------------------------------------
315
+ 2023-10-24 13:12:30,386 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
316
+ - NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
317
+ 2023-10-24 13:12:30,386 ----------------------------------------------------------------------------------------------------
318
+ 2023-10-24 13:12:30,386 Train: 5901 sentences
319
+ 2023-10-24 13:12:30,386 (train_with_dev=False, train_with_test=False)
320
+ 2023-10-24 13:12:30,386 ----------------------------------------------------------------------------------------------------
321
+ 2023-10-24 13:12:30,386 Training Params:
322
+ 2023-10-24 13:12:30,386 - learning_rate: "3e-05"
323
+ 2023-10-24 13:12:30,386 - mini_batch_size: "8"
324
+ 2023-10-24 13:12:30,386 - max_epochs: "10"
325
+ 2023-10-24 13:12:30,386 - shuffle: "True"
326
+ 2023-10-24 13:12:30,386 ----------------------------------------------------------------------------------------------------
327
+ 2023-10-24 13:12:30,386 Plugins:
328
+ 2023-10-24 13:12:30,387 - TensorboardLogger
329
+ 2023-10-24 13:12:30,387 - LinearScheduler | warmup_fraction: '0.1'
330
+ 2023-10-24 13:12:30,387 ----------------------------------------------------------------------------------------------------
331
+ 2023-10-24 13:12:30,387 Final evaluation on model from best epoch (best-model.pt)
332
+ 2023-10-24 13:12:30,387 - metric: "('micro avg', 'f1-score')"
333
+ 2023-10-24 13:12:30,387 ----------------------------------------------------------------------------------------------------
334
+ 2023-10-24 13:12:30,387 Computation:
335
+ 2023-10-24 13:12:30,387 - compute on device: cuda:0
336
+ 2023-10-24 13:12:30,387 - embedding storage: none
337
+ 2023-10-24 13:12:30,387 ----------------------------------------------------------------------------------------------------
338
+ 2023-10-24 13:12:30,387 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
339
+ 2023-10-24 13:12:30,387 ----------------------------------------------------------------------------------------------------
340
+ 2023-10-24 13:12:30,387 ----------------------------------------------------------------------------------------------------
341
+ 2023-10-24 13:12:30,387 Logging anything other than scalars to TensorBoard is currently not supported.
342
+ 2023-10-24 13:12:37,067 epoch 1 - iter 73/738 - loss 2.18161987 - time (sec): 6.68 - samples/sec: 2354.92 - lr: 0.000003 - momentum: 0.000000
343
+ 2023-10-24 13:12:44,149 epoch 1 - iter 146/738 - loss 1.42985226 - time (sec): 13.76 - samples/sec: 2283.70 - lr: 0.000006 - momentum: 0.000000
344
+ 2023-10-24 13:12:50,831 epoch 1 - iter 219/738 - loss 1.10599054 - time (sec): 20.44 - samples/sec: 2291.46 - lr: 0.000009 - momentum: 0.000000
345
+ 2023-10-24 13:12:57,060 epoch 1 - iter 292/738 - loss 0.91769116 - time (sec): 26.67 - samples/sec: 2322.65 - lr: 0.000012 - momentum: 0.000000
346
+ 2023-10-24 13:13:05,191 epoch 1 - iter 365/738 - loss 0.77452000 - time (sec): 34.80 - samples/sec: 2327.75 - lr: 0.000015 - momentum: 0.000000
347
+ 2023-10-24 13:13:11,963 epoch 1 - iter 438/738 - loss 0.68331020 - time (sec): 41.58 - samples/sec: 2359.17 - lr: 0.000018 - momentum: 0.000000
348
+ 2023-10-24 13:13:19,168 epoch 1 - iter 511/738 - loss 0.60818039 - time (sec): 48.78 - samples/sec: 2365.23 - lr: 0.000021 - momentum: 0.000000
349
+ 2023-10-24 13:13:26,029 epoch 1 - iter 584/738 - loss 0.55818973 - time (sec): 55.64 - samples/sec: 2359.43 - lr: 0.000024 - momentum: 0.000000
350
+ 2023-10-24 13:13:33,467 epoch 1 - iter 657/738 - loss 0.51160952 - time (sec): 63.08 - samples/sec: 2353.91 - lr: 0.000027 - momentum: 0.000000
351
+ 2023-10-24 13:13:39,918 epoch 1 - iter 730/738 - loss 0.47724150 - time (sec): 69.53 - samples/sec: 2357.48 - lr: 0.000030 - momentum: 0.000000
352
+ 2023-10-24 13:13:40,938 ----------------------------------------------------------------------------------------------------
353
+ 2023-10-24 13:13:40,938 EPOCH 1 done: loss 0.4728 - lr: 0.000030
354
+ 2023-10-24 13:13:47,154 DEV : loss 0.10554392635822296 - f1-score (micro avg) 0.7528
355
+ 2023-10-24 13:13:47,175 saving best model
356
+ 2023-10-24 13:13:47,725 ----------------------------------------------------------------------------------------------------
357
+ 2023-10-24 13:13:54,266 epoch 2 - iter 73/738 - loss 0.13369869 - time (sec): 6.54 - samples/sec: 2400.65 - lr: 0.000030 - momentum: 0.000000
358
+ 2023-10-24 13:14:01,134 epoch 2 - iter 146/738 - loss 0.13182120 - time (sec): 13.41 - samples/sec: 2353.28 - lr: 0.000029 - momentum: 0.000000
359
+ 2023-10-24 13:14:07,956 epoch 2 - iter 219/738 - loss 0.13189987 - time (sec): 20.23 - samples/sec: 2362.32 - lr: 0.000029 - momentum: 0.000000
360
+ 2023-10-24 13:14:14,726 epoch 2 - iter 292/738 - loss 0.12551263 - time (sec): 27.00 - samples/sec: 2339.53 - lr: 0.000029 - momentum: 0.000000
361
+ 2023-10-24 13:14:21,473 epoch 2 - iter 365/738 - loss 0.12297520 - time (sec): 33.75 - samples/sec: 2346.93 - lr: 0.000028 - momentum: 0.000000
362
+ 2023-10-24 13:14:28,306 epoch 2 - iter 438/738 - loss 0.12082661 - time (sec): 40.58 - samples/sec: 2341.88 - lr: 0.000028 - momentum: 0.000000
363
+ 2023-10-24 13:14:35,634 epoch 2 - iter 511/738 - loss 0.12078839 - time (sec): 47.91 - samples/sec: 2359.93 - lr: 0.000028 - momentum: 0.000000
364
+ 2023-10-24 13:14:43,365 epoch 2 - iter 584/738 - loss 0.11688290 - time (sec): 55.64 - samples/sec: 2357.67 - lr: 0.000027 - momentum: 0.000000
365
+ 2023-10-24 13:14:50,105 epoch 2 - iter 657/738 - loss 0.11634259 - time (sec): 62.38 - samples/sec: 2356.32 - lr: 0.000027 - momentum: 0.000000
366
+ 2023-10-24 13:14:57,762 epoch 2 - iter 730/738 - loss 0.11522082 - time (sec): 70.04 - samples/sec: 2349.93 - lr: 0.000027 - momentum: 0.000000
367
+ 2023-10-24 13:14:58,512 ----------------------------------------------------------------------------------------------------
368
+ 2023-10-24 13:14:58,512 EPOCH 2 done: loss 0.1151 - lr: 0.000027
369
+ 2023-10-24 13:15:07,005 DEV : loss 0.09679369628429413 - f1-score (micro avg) 0.7871
370
+ 2023-10-24 13:15:07,026 saving best model
371
+ 2023-10-24 13:15:07,769 ----------------------------------------------------------------------------------------------------
372
+ 2023-10-24 13:15:13,874 epoch 3 - iter 73/738 - loss 0.06119096 - time (sec): 6.10 - samples/sec: 2527.55 - lr: 0.000026 - momentum: 0.000000
373
+ 2023-10-24 13:15:21,101 epoch 3 - iter 146/738 - loss 0.06385970 - time (sec): 13.33 - samples/sec: 2408.60 - lr: 0.000026 - momentum: 0.000000
374
+ 2023-10-24 13:15:28,695 epoch 3 - iter 219/738 - loss 0.06608306 - time (sec): 20.93 - samples/sec: 2350.06 - lr: 0.000026 - momentum: 0.000000
375
+ 2023-10-24 13:15:36,070 epoch 3 - iter 292/738 - loss 0.06260299 - time (sec): 28.30 - samples/sec: 2348.85 - lr: 0.000025 - momentum: 0.000000
376
+ 2023-10-24 13:15:43,242 epoch 3 - iter 365/738 - loss 0.06272309 - time (sec): 35.47 - samples/sec: 2337.28 - lr: 0.000025 - momentum: 0.000000
377
+ 2023-10-24 13:15:50,403 epoch 3 - iter 438/738 - loss 0.06424382 - time (sec): 42.63 - samples/sec: 2337.43 - lr: 0.000025 - momentum: 0.000000
378
+ 2023-10-24 13:15:57,263 epoch 3 - iter 511/738 - loss 0.06412265 - time (sec): 49.49 - samples/sec: 2339.66 - lr: 0.000024 - momentum: 0.000000
379
+ 2023-10-24 13:16:03,619 epoch 3 - iter 584/738 - loss 0.06489306 - time (sec): 55.85 - samples/sec: 2349.80 - lr: 0.000024 - momentum: 0.000000
380
+ 2023-10-24 13:16:10,250 epoch 3 - iter 657/738 - loss 0.06455833 - time (sec): 62.48 - samples/sec: 2347.50 - lr: 0.000024 - momentum: 0.000000
381
+ 2023-10-24 13:16:17,422 epoch 3 - iter 730/738 - loss 0.06554966 - time (sec): 69.65 - samples/sec: 2355.53 - lr: 0.000023 - momentum: 0.000000
382
+ 2023-10-24 13:16:18,577 ----------------------------------------------------------------------------------------------------
383
+ 2023-10-24 13:16:18,577 EPOCH 3 done: loss 0.0656 - lr: 0.000023
384
+ 2023-10-24 13:16:27,094 DEV : loss 0.1195509284734726 - f1-score (micro avg) 0.8074
385
+ 2023-10-24 13:16:27,115 saving best model
386
+ 2023-10-24 13:16:27,857 ----------------------------------------------------------------------------------------------------
387
+ 2023-10-24 13:16:34,341 epoch 4 - iter 73/738 - loss 0.03826326 - time (sec): 6.48 - samples/sec: 2323.82 - lr: 0.000023 - momentum: 0.000000
388
+ 2023-10-24 13:16:40,745 epoch 4 - iter 146/738 - loss 0.03920578 - time (sec): 12.89 - samples/sec: 2352.56 - lr: 0.000023 - momentum: 0.000000
389
+ 2023-10-24 13:16:47,380 epoch 4 - iter 219/738 - loss 0.04269634 - time (sec): 19.52 - samples/sec: 2347.37 - lr: 0.000022 - momentum: 0.000000
390
+ 2023-10-24 13:16:53,782 epoch 4 - iter 292/738 - loss 0.03941502 - time (sec): 25.92 - samples/sec: 2350.87 - lr: 0.000022 - momentum: 0.000000
391
+ 2023-10-24 13:17:01,518 epoch 4 - iter 365/738 - loss 0.04336450 - time (sec): 33.66 - samples/sec: 2339.39 - lr: 0.000022 - momentum: 0.000000
392
+ 2023-10-24 13:17:09,372 epoch 4 - iter 438/738 - loss 0.04463978 - time (sec): 41.51 - samples/sec: 2330.02 - lr: 0.000021 - momentum: 0.000000
393
+ 2023-10-24 13:17:17,052 epoch 4 - iter 511/738 - loss 0.04335848 - time (sec): 49.19 - samples/sec: 2333.73 - lr: 0.000021 - momentum: 0.000000
394
+ 2023-10-24 13:17:24,654 epoch 4 - iter 584/738 - loss 0.04416947 - time (sec): 56.80 - samples/sec: 2342.98 - lr: 0.000021 - momentum: 0.000000
395
+ 2023-10-24 13:17:31,897 epoch 4 - iter 657/738 - loss 0.04422596 - time (sec): 64.04 - samples/sec: 2338.84 - lr: 0.000020 - momentum: 0.000000
396
+ 2023-10-24 13:17:38,254 epoch 4 - iter 730/738 - loss 0.04340328 - time (sec): 70.40 - samples/sec: 2341.64 - lr: 0.000020 - momentum: 0.000000
397
+ 2023-10-24 13:17:38,892 ----------------------------------------------------------------------------------------------------
398
+ 2023-10-24 13:17:38,893 EPOCH 4 done: loss 0.0434 - lr: 0.000020
399
+ 2023-10-24 13:17:47,395 DEV : loss 0.14306315779685974 - f1-score (micro avg) 0.8255
400
+ 2023-10-24 13:17:47,416 saving best model
401
+ 2023-10-24 13:17:48,112 ----------------------------------------------------------------------------------------------------
402
+ 2023-10-24 13:17:54,842 epoch 5 - iter 73/738 - loss 0.03252486 - time (sec): 6.73 - samples/sec: 2414.59 - lr: 0.000020 - momentum: 0.000000
403
+ 2023-10-24 13:18:02,107 epoch 5 - iter 146/738 - loss 0.02695551 - time (sec): 13.99 - samples/sec: 2423.52 - lr: 0.000019 - momentum: 0.000000
404
+ 2023-10-24 13:18:09,085 epoch 5 - iter 219/738 - loss 0.02469070 - time (sec): 20.97 - samples/sec: 2355.55 - lr: 0.000019 - momentum: 0.000000
405
+ 2023-10-24 13:18:15,961 epoch 5 - iter 292/738 - loss 0.02799215 - time (sec): 27.85 - samples/sec: 2360.35 - lr: 0.000019 - momentum: 0.000000
406
+ 2023-10-24 13:18:23,556 epoch 5 - iter 365/738 - loss 0.03089862 - time (sec): 35.44 - samples/sec: 2369.17 - lr: 0.000018 - momentum: 0.000000
407
+ 2023-10-24 13:18:30,272 epoch 5 - iter 438/738 - loss 0.02992995 - time (sec): 42.16 - samples/sec: 2370.04 - lr: 0.000018 - momentum: 0.000000
408
+ 2023-10-24 13:18:36,758 epoch 5 - iter 511/738 - loss 0.03020870 - time (sec): 48.65 - samples/sec: 2361.43 - lr: 0.000018 - momentum: 0.000000
409
+ 2023-10-24 13:18:44,656 epoch 5 - iter 584/738 - loss 0.02894484 - time (sec): 56.54 - samples/sec: 2341.48 - lr: 0.000017 - momentum: 0.000000
410
+ 2023-10-24 13:18:51,234 epoch 5 - iter 657/738 - loss 0.02917966 - time (sec): 63.12 - samples/sec: 2354.37 - lr: 0.000017 - momentum: 0.000000
411
+ 2023-10-24 13:18:58,515 epoch 5 - iter 730/738 - loss 0.02891546 - time (sec): 70.40 - samples/sec: 2342.45 - lr: 0.000017 - momentum: 0.000000
412
+ 2023-10-24 13:18:59,256 ----------------------------------------------------------------------------------------------------
413
+ 2023-10-24 13:18:59,256 EPOCH 5 done: loss 0.0290 - lr: 0.000017
414
+ 2023-10-24 13:19:07,778 DEV : loss 0.17278100550174713 - f1-score (micro avg) 0.8353
415
+ 2023-10-24 13:19:07,800 saving best model
416
+ 2023-10-24 13:19:08,554 ----------------------------------------------------------------------------------------------------
417
+ 2023-10-24 13:19:15,847 epoch 6 - iter 73/738 - loss 0.02161928 - time (sec): 7.29 - samples/sec: 2358.73 - lr: 0.000016 - momentum: 0.000000
418
+ 2023-10-24 13:19:21,872 epoch 6 - iter 146/738 - loss 0.02705650 - time (sec): 13.32 - samples/sec: 2391.93 - lr: 0.000016 - momentum: 0.000000
419
+ 2023-10-24 13:19:28,868 epoch 6 - iter 219/738 - loss 0.02310291 - time (sec): 20.31 - samples/sec: 2372.71 - lr: 0.000016 - momentum: 0.000000
420
+ 2023-10-24 13:19:36,807 epoch 6 - iter 292/738 - loss 0.02454477 - time (sec): 28.25 - samples/sec: 2397.80 - lr: 0.000015 - momentum: 0.000000
421
+ 2023-10-24 13:19:43,311 epoch 6 - iter 365/738 - loss 0.02313850 - time (sec): 34.76 - samples/sec: 2387.53 - lr: 0.000015 - momentum: 0.000000
422
+ 2023-10-24 13:19:49,707 epoch 6 - iter 438/738 - loss 0.02240292 - time (sec): 41.15 - samples/sec: 2378.88 - lr: 0.000015 - momentum: 0.000000
423
+ 2023-10-24 13:19:55,818 epoch 6 - iter 511/738 - loss 0.02311644 - time (sec): 47.26 - samples/sec: 2369.82 - lr: 0.000014 - momentum: 0.000000
424
+ 2023-10-24 13:20:02,974 epoch 6 - iter 584/738 - loss 0.02322732 - time (sec): 54.42 - samples/sec: 2367.98 - lr: 0.000014 - momentum: 0.000000
425
+ 2023-10-24 13:20:10,794 epoch 6 - iter 657/738 - loss 0.02288665 - time (sec): 62.24 - samples/sec: 2368.39 - lr: 0.000014 - momentum: 0.000000
426
+ 2023-10-24 13:20:18,200 epoch 6 - iter 730/738 - loss 0.02245972 - time (sec): 69.65 - samples/sec: 2364.74 - lr: 0.000013 - momentum: 0.000000
427
+ 2023-10-24 13:20:18,854 ----------------------------------------------------------------------------------------------------
428
+ 2023-10-24 13:20:18,855 EPOCH 6 done: loss 0.0223 - lr: 0.000013
429
+ 2023-10-24 13:20:27,379 DEV : loss 0.1752229779958725 - f1-score (micro avg) 0.8311
430
+ 2023-10-24 13:20:27,400 ----------------------------------------------------------------------------------------------------
431
+ 2023-10-24 13:20:34,992 epoch 7 - iter 73/738 - loss 0.01696402 - time (sec): 7.59 - samples/sec: 2506.55 - lr: 0.000013 - momentum: 0.000000
432
+ 2023-10-24 13:20:42,483 epoch 7 - iter 146/738 - loss 0.01606754 - time (sec): 15.08 - samples/sec: 2405.65 - lr: 0.000013 - momentum: 0.000000
433
+ 2023-10-24 13:20:49,251 epoch 7 - iter 219/738 - loss 0.01446198 - time (sec): 21.85 - samples/sec: 2366.51 - lr: 0.000012 - momentum: 0.000000
434
+ 2023-10-24 13:20:56,316 epoch 7 - iter 292/738 - loss 0.01432059 - time (sec): 28.91 - samples/sec: 2354.26 - lr: 0.000012 - momentum: 0.000000
435
+ 2023-10-24 13:21:02,785 epoch 7 - iter 365/738 - loss 0.01467452 - time (sec): 35.38 - samples/sec: 2363.45 - lr: 0.000012 - momentum: 0.000000
436
+ 2023-10-24 13:21:09,515 epoch 7 - iter 438/738 - loss 0.01528636 - time (sec): 42.11 - samples/sec: 2356.64 - lr: 0.000011 - momentum: 0.000000
437
+ 2023-10-24 13:21:16,247 epoch 7 - iter 511/738 - loss 0.01555352 - time (sec): 48.85 - samples/sec: 2347.07 - lr: 0.000011 - momentum: 0.000000
438
+ 2023-10-24 13:21:22,550 epoch 7 - iter 584/738 - loss 0.01567911 - time (sec): 55.15 - samples/sec: 2345.54 - lr: 0.000011 - momentum: 0.000000
439
+ 2023-10-24 13:21:30,682 epoch 7 - iter 657/738 - loss 0.01546853 - time (sec): 63.28 - samples/sec: 2347.97 - lr: 0.000010 - momentum: 0.000000
440
+ 2023-10-24 13:21:37,808 epoch 7 - iter 730/738 - loss 0.01529696 - time (sec): 70.41 - samples/sec: 2337.42 - lr: 0.000010 - momentum: 0.000000
441
+ 2023-10-24 13:21:38,478 ----------------------------------------------------------------------------------------------------
442
+ 2023-10-24 13:21:38,478 EPOCH 7 done: loss 0.0154 - lr: 0.000010
443
+ 2023-10-24 13:21:47,007 DEV : loss 0.18594373762607574 - f1-score (micro avg) 0.8365
444
+ 2023-10-24 13:21:47,028 saving best model
445
+ 2023-10-24 13:21:47,720 ----------------------------------------------------------------------------------------------------
446
+ 2023-10-24 13:21:54,425 epoch 8 - iter 73/738 - loss 0.00750537 - time (sec): 6.70 - samples/sec: 2238.98 - lr: 0.000010 - momentum: 0.000000
447
+ 2023-10-24 13:22:01,617 epoch 8 - iter 146/738 - loss 0.00788359 - time (sec): 13.90 - samples/sec: 2269.45 - lr: 0.000009 - momentum: 0.000000
448
+ 2023-10-24 13:22:08,824 epoch 8 - iter 219/738 - loss 0.00934315 - time (sec): 21.10 - samples/sec: 2322.77 - lr: 0.000009 - momentum: 0.000000
449
+ 2023-10-24 13:22:16,377 epoch 8 - iter 292/738 - loss 0.01466951 - time (sec): 28.66 - samples/sec: 2371.90 - lr: 0.000009 - momentum: 0.000000
450
+ 2023-10-24 13:22:22,773 epoch 8 - iter 365/738 - loss 0.01332356 - time (sec): 35.05 - samples/sec: 2373.74 - lr: 0.000008 - momentum: 0.000000
451
+ 2023-10-24 13:22:30,133 epoch 8 - iter 438/738 - loss 0.01270781 - time (sec): 42.41 - samples/sec: 2367.04 - lr: 0.000008 - momentum: 0.000000
452
+ 2023-10-24 13:22:36,550 epoch 8 - iter 511/738 - loss 0.01165258 - time (sec): 48.83 - samples/sec: 2364.33 - lr: 0.000008 - momentum: 0.000000
453
+ 2023-10-24 13:22:43,352 epoch 8 - iter 584/738 - loss 0.01144850 - time (sec): 55.63 - samples/sec: 2364.87 - lr: 0.000007 - momentum: 0.000000
454
+ 2023-10-24 13:22:50,962 epoch 8 - iter 657/738 - loss 0.01115597 - time (sec): 63.24 - samples/sec: 2359.28 - lr: 0.000007 - momentum: 0.000000
455
+ 2023-10-24 13:22:57,811 epoch 8 - iter 730/738 - loss 0.01096523 - time (sec): 70.09 - samples/sec: 2347.47 - lr: 0.000007 - momentum: 0.000000
456
+ 2023-10-24 13:22:58,511 ----------------------------------------------------------------------------------------------------
457
+ 2023-10-24 13:22:58,512 EPOCH 8 done: loss 0.0109 - lr: 0.000007
458
+ 2023-10-24 13:23:07,041 DEV : loss 0.20139646530151367 - f1-score (micro avg) 0.8427
459
+ 2023-10-24 13:23:07,063 saving best model
460
+ 2023-10-24 13:23:07,765 ----------------------------------------------------------------------------------------------------
461
+ 2023-10-24 13:23:14,724 epoch 9 - iter 73/738 - loss 0.00257277 - time (sec): 6.96 - samples/sec: 2324.26 - lr: 0.000006 - momentum: 0.000000
462
+ 2023-10-24 13:23:23,010 epoch 9 - iter 146/738 - loss 0.00730412 - time (sec): 15.24 - samples/sec: 2403.85 - lr: 0.000006 - momentum: 0.000000
463
+ 2023-10-24 13:23:29,423 epoch 9 - iter 219/738 - loss 0.00609698 - time (sec): 21.66 - samples/sec: 2410.15 - lr: 0.000006 - momentum: 0.000000
464
+ 2023-10-24 13:23:35,741 epoch 9 - iter 292/738 - loss 0.00544285 - time (sec): 27.98 - samples/sec: 2421.83 - lr: 0.000005 - momentum: 0.000000
465
+ 2023-10-24 13:23:42,329 epoch 9 - iter 365/738 - loss 0.00635157 - time (sec): 34.56 - samples/sec: 2393.52 - lr: 0.000005 - momentum: 0.000000
466
+ 2023-10-24 13:23:49,427 epoch 9 - iter 438/738 - loss 0.00672352 - time (sec): 41.66 - samples/sec: 2379.81 - lr: 0.000005 - momentum: 0.000000
467
+ 2023-10-24 13:23:56,025 epoch 9 - iter 511/738 - loss 0.00663039 - time (sec): 48.26 - samples/sec: 2380.14 - lr: 0.000004 - momentum: 0.000000
468
+ 2023-10-24 13:24:03,205 epoch 9 - iter 584/738 - loss 0.00714230 - time (sec): 55.44 - samples/sec: 2372.22 - lr: 0.000004 - momentum: 0.000000
469
+ 2023-10-24 13:24:10,544 epoch 9 - iter 657/738 - loss 0.00737085 - time (sec): 62.78 - samples/sec: 2369.24 - lr: 0.000004 - momentum: 0.000000
470
+ 2023-10-24 13:24:17,784 epoch 9 - iter 730/738 - loss 0.00770982 - time (sec): 70.02 - samples/sec: 2355.80 - lr: 0.000003 - momentum: 0.000000
471
+ 2023-10-24 13:24:18,512 ----------------------------------------------------------------------------------------------------
472
+ 2023-10-24 13:24:18,513 EPOCH 9 done: loss 0.0077 - lr: 0.000003
473
+ 2023-10-24 13:24:27,038 DEV : loss 0.21205534040927887 - f1-score (micro avg) 0.8366
474
+ 2023-10-24 13:24:27,060 ----------------------------------------------------------------------------------------------------
475
+ 2023-10-24 13:24:34,370 epoch 10 - iter 73/738 - loss 0.00087160 - time (sec): 7.31 - samples/sec: 2298.01 - lr: 0.000003 - momentum: 0.000000
476
+ 2023-10-24 13:24:40,795 epoch 10 - iter 146/738 - loss 0.00199352 - time (sec): 13.73 - samples/sec: 2346.39 - lr: 0.000003 - momentum: 0.000000
477
+ 2023-10-24 13:24:47,446 epoch 10 - iter 219/738 - loss 0.00286730 - time (sec): 20.39 - samples/sec: 2358.58 - lr: 0.000002 - momentum: 0.000000
478
+ 2023-10-24 13:24:54,218 epoch 10 - iter 292/738 - loss 0.00350713 - time (sec): 27.16 - samples/sec: 2358.90 - lr: 0.000002 - momentum: 0.000000
479
+ 2023-10-24 13:25:01,059 epoch 10 - iter 365/738 - loss 0.00344795 - time (sec): 34.00 - samples/sec: 2340.08 - lr: 0.000002 - momentum: 0.000000
480
+ 2023-10-24 13:25:07,969 epoch 10 - iter 438/738 - loss 0.00386173 - time (sec): 40.91 - samples/sec: 2319.16 - lr: 0.000001 - momentum: 0.000000
481
+ 2023-10-24 13:25:14,691 epoch 10 - iter 511/738 - loss 0.00390650 - time (sec): 47.63 - samples/sec: 2328.71 - lr: 0.000001 - momentum: 0.000000
482
+ 2023-10-24 13:25:21,256 epoch 10 - iter 584/738 - loss 0.00497431 - time (sec): 54.20 - samples/sec: 2330.43 - lr: 0.000001 - momentum: 0.000000
483
+ 2023-10-24 13:25:28,442 epoch 10 - iter 657/738 - loss 0.00532116 - time (sec): 61.38 - samples/sec: 2357.16 - lr: 0.000000 - momentum: 0.000000
484
+ 2023-10-24 13:25:36,894 epoch 10 - iter 730/738 - loss 0.00617810 - time (sec): 69.83 - samples/sec: 2357.54 - lr: 0.000000 - momentum: 0.000000
485
+ 2023-10-24 13:25:37,571 ----------------------------------------------------------------------------------------------------
486
+ 2023-10-24 13:25:37,572 EPOCH 10 done: loss 0.0061 - lr: 0.000000
487
+ 2023-10-24 13:25:46,103 DEV : loss 0.2109983116388321 - f1-score (micro avg) 0.8403
488
+ 2023-10-24 13:25:46,684 ----------------------------------------------------------------------------------------------------
489
+ 2023-10-24 13:25:46,685 Loading model from best epoch ...
490
+ 2023-10-24 13:25:48,551 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
491
+ 2023-10-24 13:25:55,248
492
+ Results:
493
+ - F-score (micro) 0.7894
494
+ - F-score (macro) 0.6916
495
+ - Accuracy 0.6747
496
+
497
+ By class:
498
+ precision recall f1-score support
499
+
500
+ loc 0.8341 0.8846 0.8586 858
501
+ pers 0.7371 0.7989 0.7668 537
502
+ org 0.5547 0.5758 0.5651 132
503
+ time 0.5077 0.6111 0.5546 54
504
+ prod 0.7593 0.6721 0.7130 61
505
+
506
+ micro avg 0.7654 0.8149 0.7894 1642
507
+ macro avg 0.6786 0.7085 0.6916 1642
508
+ weighted avg 0.7664 0.8149 0.7896 1642
509
+
510
+ 2023-10-24 13:25:55,249 ----------------------------------------------------------------------------------------------------