Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697653303.46dc0c540dd0.2878.15 +3 -0
- test.tsv +0 -0
- training.log +245 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:891f2f7de79b7853a3e73835cb5df5ea84cc009e4ef3bc42eeec38c548c2d807
|
3 |
+
size 19050210
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 18:21:55 0.0000 1.8109 0.4488 0.0000 0.0000 0.0000 0.0000
|
3 |
+
2 18:22:11 0.0000 0.4835 0.3287 0.3274 0.1446 0.2007 0.1145
|
4 |
+
3 18:22:26 0.0000 0.3996 0.3115 0.3528 0.2455 0.2895 0.1763
|
5 |
+
4 18:22:41 0.0000 0.3601 0.3031 0.3847 0.2830 0.3261 0.2034
|
6 |
+
5 18:22:56 0.0000 0.3314 0.2967 0.3694 0.3206 0.3432 0.2180
|
7 |
+
6 18:23:12 0.0000 0.3076 0.2882 0.3548 0.3315 0.3428 0.2177
|
8 |
+
7 18:23:27 0.0000 0.2978 0.2950 0.3780 0.3221 0.3478 0.2213
|
9 |
+
8 18:23:43 0.0000 0.2878 0.2947 0.3706 0.3268 0.3473 0.2207
|
10 |
+
9 18:23:59 0.0000 0.2753 0.2968 0.3769 0.3182 0.3451 0.2182
|
11 |
+
10 18:24:14 0.0000 0.2761 0.2940 0.3741 0.3299 0.3506 0.2230
|
runs/events.out.tfevents.1697653303.46dc0c540dd0.2878.15
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a01e4613ecd61a9f5d7ab61e4c61a1debd06588fdb6e69e36c1dfa8b2e811234
|
3 |
+
size 253592
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-18 18:21:43,173 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-18 18:21:43,173 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 128)
|
7 |
+
(position_embeddings): Embedding(512, 128)
|
8 |
+
(token_type_embeddings): Embedding(2, 128)
|
9 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-1): 2 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=128, out_features=128, bias=True)
|
18 |
+
(key): Linear(in_features=128, out_features=128, bias=True)
|
19 |
+
(value): Linear(in_features=128, out_features=128, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=128, out_features=512, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=512, out_features=128, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=128, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-18 18:21:43,173 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-18 18:21:43,173 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
53 |
+
2023-10-18 18:21:43,173 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-18 18:21:43,173 Train: 3575 sentences
|
55 |
+
2023-10-18 18:21:43,173 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-18 18:21:43,173 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-18 18:21:43,173 Training Params:
|
58 |
+
2023-10-18 18:21:43,173 - learning_rate: "5e-05"
|
59 |
+
2023-10-18 18:21:43,173 - mini_batch_size: "8"
|
60 |
+
2023-10-18 18:21:43,173 - max_epochs: "10"
|
61 |
+
2023-10-18 18:21:43,173 - shuffle: "True"
|
62 |
+
2023-10-18 18:21:43,173 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-18 18:21:43,173 Plugins:
|
64 |
+
2023-10-18 18:21:43,173 - TensorboardLogger
|
65 |
+
2023-10-18 18:21:43,173 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-18 18:21:43,174 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-18 18:21:43,174 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-18 18:21:43,174 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-18 18:21:43,174 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-18 18:21:43,174 Computation:
|
71 |
+
2023-10-18 18:21:43,174 - compute on device: cuda:0
|
72 |
+
2023-10-18 18:21:43,174 - embedding storage: none
|
73 |
+
2023-10-18 18:21:43,174 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-18 18:21:43,174 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
|
75 |
+
2023-10-18 18:21:43,174 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-18 18:21:43,174 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-18 18:21:43,174 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-18 18:21:44,063 epoch 1 - iter 44/447 - loss 4.23649821 - time (sec): 0.89 - samples/sec: 9205.03 - lr: 0.000005 - momentum: 0.000000
|
79 |
+
2023-10-18 18:21:45,001 epoch 1 - iter 88/447 - loss 4.09913748 - time (sec): 1.83 - samples/sec: 9161.65 - lr: 0.000010 - momentum: 0.000000
|
80 |
+
2023-10-18 18:21:46,122 epoch 1 - iter 132/447 - loss 3.70752803 - time (sec): 2.95 - samples/sec: 8885.41 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-18 18:21:47,135 epoch 1 - iter 176/447 - loss 3.33851307 - time (sec): 3.96 - samples/sec: 8897.63 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2023-10-18 18:21:48,153 epoch 1 - iter 220/447 - loss 2.91921810 - time (sec): 4.98 - samples/sec: 8929.24 - lr: 0.000024 - momentum: 0.000000
|
83 |
+
2023-10-18 18:21:49,138 epoch 1 - iter 264/447 - loss 2.57172108 - time (sec): 5.96 - samples/sec: 8897.72 - lr: 0.000029 - momentum: 0.000000
|
84 |
+
2023-10-18 18:21:50,118 epoch 1 - iter 308/447 - loss 2.32138092 - time (sec): 6.94 - samples/sec: 8782.67 - lr: 0.000034 - momentum: 0.000000
|
85 |
+
2023-10-18 18:21:51,110 epoch 1 - iter 352/447 - loss 2.12444880 - time (sec): 7.94 - samples/sec: 8684.37 - lr: 0.000039 - momentum: 0.000000
|
86 |
+
2023-10-18 18:21:52,115 epoch 1 - iter 396/447 - loss 1.96997781 - time (sec): 8.94 - samples/sec: 8592.80 - lr: 0.000044 - momentum: 0.000000
|
87 |
+
2023-10-18 18:21:53,135 epoch 1 - iter 440/447 - loss 1.83051644 - time (sec): 9.96 - samples/sec: 8560.53 - lr: 0.000049 - momentum: 0.000000
|
88 |
+
2023-10-18 18:21:53,279 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-18 18:21:53,280 EPOCH 1 done: loss 1.8109 - lr: 0.000049
|
90 |
+
2023-10-18 18:21:55,566 DEV : loss 0.44877171516418457 - f1-score (micro avg) 0.0
|
91 |
+
2023-10-18 18:21:55,589 ----------------------------------------------------------------------------------------------------
|
92 |
+
2023-10-18 18:21:56,612 epoch 2 - iter 44/447 - loss 0.60155493 - time (sec): 1.02 - samples/sec: 8574.38 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-10-18 18:21:57,597 epoch 2 - iter 88/447 - loss 0.56142538 - time (sec): 2.01 - samples/sec: 8504.11 - lr: 0.000049 - momentum: 0.000000
|
94 |
+
2023-10-18 18:21:58,565 epoch 2 - iter 132/447 - loss 0.55726995 - time (sec): 2.98 - samples/sec: 8469.91 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-10-18 18:21:59,547 epoch 2 - iter 176/447 - loss 0.54406916 - time (sec): 3.96 - samples/sec: 8495.52 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-18 18:22:00,547 epoch 2 - iter 220/447 - loss 0.53559205 - time (sec): 4.96 - samples/sec: 8474.13 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-10-18 18:22:01,542 epoch 2 - iter 264/447 - loss 0.52587561 - time (sec): 5.95 - samples/sec: 8323.02 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-18 18:22:02,554 epoch 2 - iter 308/447 - loss 0.51234790 - time (sec): 6.96 - samples/sec: 8349.78 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-10-18 18:22:03,602 epoch 2 - iter 352/447 - loss 0.49579329 - time (sec): 8.01 - samples/sec: 8484.55 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-18 18:22:04,613 epoch 2 - iter 396/447 - loss 0.49021091 - time (sec): 9.02 - samples/sec: 8540.08 - lr: 0.000045 - momentum: 0.000000
|
101 |
+
2023-10-18 18:22:05,637 epoch 2 - iter 440/447 - loss 0.48330812 - time (sec): 10.05 - samples/sec: 8495.76 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-18 18:22:05,784 ----------------------------------------------------------------------------------------------------
|
103 |
+
2023-10-18 18:22:05,784 EPOCH 2 done: loss 0.4835 - lr: 0.000045
|
104 |
+
2023-10-18 18:22:11,082 DEV : loss 0.32866111397743225 - f1-score (micro avg) 0.2007
|
105 |
+
2023-10-18 18:22:11,105 saving best model
|
106 |
+
2023-10-18 18:22:11,142 ----------------------------------------------------------------------------------------------------
|
107 |
+
2023-10-18 18:22:12,115 epoch 3 - iter 44/447 - loss 0.40849086 - time (sec): 0.97 - samples/sec: 9093.83 - lr: 0.000044 - momentum: 0.000000
|
108 |
+
2023-10-18 18:22:13,082 epoch 3 - iter 88/447 - loss 0.39700437 - time (sec): 1.94 - samples/sec: 8792.81 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-10-18 18:22:14,073 epoch 3 - iter 132/447 - loss 0.41180397 - time (sec): 2.93 - samples/sec: 8767.84 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-18 18:22:15,057 epoch 3 - iter 176/447 - loss 0.41517633 - time (sec): 3.91 - samples/sec: 8603.19 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-10-18 18:22:16,077 epoch 3 - iter 220/447 - loss 0.40697778 - time (sec): 4.93 - samples/sec: 8582.36 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-18 18:22:17,133 epoch 3 - iter 264/447 - loss 0.40336023 - time (sec): 5.99 - samples/sec: 8712.21 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-10-18 18:22:18,123 epoch 3 - iter 308/447 - loss 0.40473996 - time (sec): 6.98 - samples/sec: 8727.05 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-18 18:22:19,105 epoch 3 - iter 352/447 - loss 0.40234530 - time (sec): 7.96 - samples/sec: 8674.70 - lr: 0.000040 - momentum: 0.000000
|
115 |
+
2023-10-18 18:22:20,067 epoch 3 - iter 396/447 - loss 0.40175952 - time (sec): 8.92 - samples/sec: 8624.41 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2023-10-18 18:22:21,055 epoch 3 - iter 440/447 - loss 0.40155202 - time (sec): 9.91 - samples/sec: 8597.01 - lr: 0.000039 - momentum: 0.000000
|
117 |
+
2023-10-18 18:22:21,214 ----------------------------------------------------------------------------------------------------
|
118 |
+
2023-10-18 18:22:21,214 EPOCH 3 done: loss 0.3996 - lr: 0.000039
|
119 |
+
2023-10-18 18:22:26,494 DEV : loss 0.31150904297828674 - f1-score (micro avg) 0.2895
|
120 |
+
2023-10-18 18:22:26,518 saving best model
|
121 |
+
2023-10-18 18:22:26,553 ----------------------------------------------------------------------------------------------------
|
122 |
+
2023-10-18 18:22:27,547 epoch 4 - iter 44/447 - loss 0.31938505 - time (sec): 0.99 - samples/sec: 7768.01 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-10-18 18:22:28,522 epoch 4 - iter 88/447 - loss 0.35629034 - time (sec): 1.97 - samples/sec: 8020.00 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2023-10-18 18:22:29,360 epoch 4 - iter 132/447 - loss 0.37841602 - time (sec): 2.81 - samples/sec: 8550.59 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-10-18 18:22:30,205 epoch 4 - iter 176/447 - loss 0.37884124 - time (sec): 3.65 - samples/sec: 8816.64 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2023-10-18 18:22:31,154 epoch 4 - iter 220/447 - loss 0.36800228 - time (sec): 4.60 - samples/sec: 9070.98 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-10-18 18:22:32,140 epoch 4 - iter 264/447 - loss 0.35905570 - time (sec): 5.59 - samples/sec: 9038.17 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2023-10-18 18:22:33,228 epoch 4 - iter 308/447 - loss 0.35834364 - time (sec): 6.68 - samples/sec: 8997.15 - lr: 0.000035 - momentum: 0.000000
|
129 |
+
2023-10-18 18:22:34,223 epoch 4 - iter 352/447 - loss 0.35753489 - time (sec): 7.67 - samples/sec: 8989.30 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2023-10-18 18:22:35,209 epoch 4 - iter 396/447 - loss 0.35399316 - time (sec): 8.66 - samples/sec: 8900.47 - lr: 0.000034 - momentum: 0.000000
|
131 |
+
2023-10-18 18:22:36,209 epoch 4 - iter 440/447 - loss 0.35960244 - time (sec): 9.66 - samples/sec: 8828.74 - lr: 0.000033 - momentum: 0.000000
|
132 |
+
2023-10-18 18:22:36,366 ----------------------------------------------------------------------------------------------------
|
133 |
+
2023-10-18 18:22:36,366 EPOCH 4 done: loss 0.3601 - lr: 0.000033
|
134 |
+
2023-10-18 18:22:41,343 DEV : loss 0.3030697703361511 - f1-score (micro avg) 0.3261
|
135 |
+
2023-10-18 18:22:41,367 saving best model
|
136 |
+
2023-10-18 18:22:41,411 ----------------------------------------------------------------------------------------------------
|
137 |
+
2023-10-18 18:22:42,431 epoch 5 - iter 44/447 - loss 0.32935993 - time (sec): 1.02 - samples/sec: 8650.32 - lr: 0.000033 - momentum: 0.000000
|
138 |
+
2023-10-18 18:22:43,415 epoch 5 - iter 88/447 - loss 0.31978926 - time (sec): 2.00 - samples/sec: 8326.37 - lr: 0.000032 - momentum: 0.000000
|
139 |
+
2023-10-18 18:22:44,768 epoch 5 - iter 132/447 - loss 0.32434382 - time (sec): 3.36 - samples/sec: 7570.99 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2023-10-18 18:22:45,779 epoch 5 - iter 176/447 - loss 0.32626966 - time (sec): 4.37 - samples/sec: 7906.10 - lr: 0.000031 - momentum: 0.000000
|
141 |
+
2023-10-18 18:22:46,731 epoch 5 - iter 220/447 - loss 0.32079104 - time (sec): 5.32 - samples/sec: 8117.80 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2023-10-18 18:22:47,707 epoch 5 - iter 264/447 - loss 0.32647442 - time (sec): 6.30 - samples/sec: 8199.87 - lr: 0.000030 - momentum: 0.000000
|
143 |
+
2023-10-18 18:22:48,633 epoch 5 - iter 308/447 - loss 0.33184709 - time (sec): 7.22 - samples/sec: 8204.55 - lr: 0.000030 - momentum: 0.000000
|
144 |
+
2023-10-18 18:22:49,467 epoch 5 - iter 352/447 - loss 0.33135495 - time (sec): 8.06 - samples/sec: 8350.69 - lr: 0.000029 - momentum: 0.000000
|
145 |
+
2023-10-18 18:22:50,382 epoch 5 - iter 396/447 - loss 0.32921133 - time (sec): 8.97 - samples/sec: 8431.60 - lr: 0.000028 - momentum: 0.000000
|
146 |
+
2023-10-18 18:22:51,434 epoch 5 - iter 440/447 - loss 0.33252622 - time (sec): 10.02 - samples/sec: 8520.37 - lr: 0.000028 - momentum: 0.000000
|
147 |
+
2023-10-18 18:22:51,599 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-18 18:22:51,599 EPOCH 5 done: loss 0.3314 - lr: 0.000028
|
149 |
+
2023-10-18 18:22:56,580 DEV : loss 0.2966790497303009 - f1-score (micro avg) 0.3432
|
150 |
+
2023-10-18 18:22:56,605 saving best model
|
151 |
+
2023-10-18 18:22:56,646 ----------------------------------------------------------------------------------------------------
|
152 |
+
2023-10-18 18:22:57,639 epoch 6 - iter 44/447 - loss 0.32205009 - time (sec): 0.99 - samples/sec: 7882.22 - lr: 0.000027 - momentum: 0.000000
|
153 |
+
2023-10-18 18:22:58,675 epoch 6 - iter 88/447 - loss 0.28851192 - time (sec): 2.03 - samples/sec: 8518.03 - lr: 0.000027 - momentum: 0.000000
|
154 |
+
2023-10-18 18:22:59,657 epoch 6 - iter 132/447 - loss 0.27935474 - time (sec): 3.01 - samples/sec: 8308.57 - lr: 0.000026 - momentum: 0.000000
|
155 |
+
2023-10-18 18:23:00,674 epoch 6 - iter 176/447 - loss 0.29305316 - time (sec): 4.03 - samples/sec: 8517.53 - lr: 0.000026 - momentum: 0.000000
|
156 |
+
2023-10-18 18:23:01,689 epoch 6 - iter 220/447 - loss 0.29344782 - time (sec): 5.04 - samples/sec: 8600.65 - lr: 0.000025 - momentum: 0.000000
|
157 |
+
2023-10-18 18:23:02,693 epoch 6 - iter 264/447 - loss 0.29557160 - time (sec): 6.05 - samples/sec: 8512.17 - lr: 0.000025 - momentum: 0.000000
|
158 |
+
2023-10-18 18:23:03,653 epoch 6 - iter 308/447 - loss 0.29555013 - time (sec): 7.01 - samples/sec: 8482.76 - lr: 0.000024 - momentum: 0.000000
|
159 |
+
2023-10-18 18:23:04,667 epoch 6 - iter 352/447 - loss 0.29649384 - time (sec): 8.02 - samples/sec: 8570.31 - lr: 0.000023 - momentum: 0.000000
|
160 |
+
2023-10-18 18:23:05,648 epoch 6 - iter 396/447 - loss 0.29505917 - time (sec): 9.00 - samples/sec: 8570.39 - lr: 0.000023 - momentum: 0.000000
|
161 |
+
2023-10-18 18:23:06,640 epoch 6 - iter 440/447 - loss 0.30654783 - time (sec): 9.99 - samples/sec: 8556.98 - lr: 0.000022 - momentum: 0.000000
|
162 |
+
2023-10-18 18:23:06,794 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-18 18:23:06,794 EPOCH 6 done: loss 0.3076 - lr: 0.000022
|
164 |
+
2023-10-18 18:23:12,104 DEV : loss 0.2881721258163452 - f1-score (micro avg) 0.3428
|
165 |
+
2023-10-18 18:23:12,130 ----------------------------------------------------------------------------------------------------
|
166 |
+
2023-10-18 18:23:13,173 epoch 7 - iter 44/447 - loss 0.24532264 - time (sec): 1.04 - samples/sec: 8882.55 - lr: 0.000022 - momentum: 0.000000
|
167 |
+
2023-10-18 18:23:14,184 epoch 7 - iter 88/447 - loss 0.27568476 - time (sec): 2.05 - samples/sec: 8486.80 - lr: 0.000021 - momentum: 0.000000
|
168 |
+
2023-10-18 18:23:15,283 epoch 7 - iter 132/447 - loss 0.29794749 - time (sec): 3.15 - samples/sec: 8599.07 - lr: 0.000021 - momentum: 0.000000
|
169 |
+
2023-10-18 18:23:16,312 epoch 7 - iter 176/447 - loss 0.29956954 - time (sec): 4.18 - samples/sec: 8565.70 - lr: 0.000020 - momentum: 0.000000
|
170 |
+
2023-10-18 18:23:17,376 epoch 7 - iter 220/447 - loss 0.30213892 - time (sec): 5.25 - samples/sec: 8384.24 - lr: 0.000020 - momentum: 0.000000
|
171 |
+
2023-10-18 18:23:18,349 epoch 7 - iter 264/447 - loss 0.30357337 - time (sec): 6.22 - samples/sec: 8377.41 - lr: 0.000019 - momentum: 0.000000
|
172 |
+
2023-10-18 18:23:19,377 epoch 7 - iter 308/447 - loss 0.29758405 - time (sec): 7.25 - samples/sec: 8318.63 - lr: 0.000018 - momentum: 0.000000
|
173 |
+
2023-10-18 18:23:20,358 epoch 7 - iter 352/447 - loss 0.29898433 - time (sec): 8.23 - samples/sec: 8353.32 - lr: 0.000018 - momentum: 0.000000
|
174 |
+
2023-10-18 18:23:21,384 epoch 7 - iter 396/447 - loss 0.29612803 - time (sec): 9.25 - samples/sec: 8325.21 - lr: 0.000017 - momentum: 0.000000
|
175 |
+
2023-10-18 18:23:22,424 epoch 7 - iter 440/447 - loss 0.29754448 - time (sec): 10.29 - samples/sec: 8276.01 - lr: 0.000017 - momentum: 0.000000
|
176 |
+
2023-10-18 18:23:22,589 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-10-18 18:23:22,589 EPOCH 7 done: loss 0.2978 - lr: 0.000017
|
178 |
+
2023-10-18 18:23:27,857 DEV : loss 0.2950444519519806 - f1-score (micro avg) 0.3478
|
179 |
+
2023-10-18 18:23:27,881 saving best model
|
180 |
+
2023-10-18 18:23:27,915 ----------------------------------------------------------------------------------------------------
|
181 |
+
2023-10-18 18:23:28,944 epoch 8 - iter 44/447 - loss 0.29022344 - time (sec): 1.03 - samples/sec: 9194.27 - lr: 0.000016 - momentum: 0.000000
|
182 |
+
2023-10-18 18:23:29,939 epoch 8 - iter 88/447 - loss 0.27818831 - time (sec): 2.02 - samples/sec: 8694.64 - lr: 0.000016 - momentum: 0.000000
|
183 |
+
2023-10-18 18:23:30,925 epoch 8 - iter 132/447 - loss 0.29183782 - time (sec): 3.01 - samples/sec: 8683.21 - lr: 0.000015 - momentum: 0.000000
|
184 |
+
2023-10-18 18:23:31,934 epoch 8 - iter 176/447 - loss 0.29768575 - time (sec): 4.02 - samples/sec: 8511.47 - lr: 0.000015 - momentum: 0.000000
|
185 |
+
2023-10-18 18:23:32,961 epoch 8 - iter 220/447 - loss 0.30091732 - time (sec): 5.05 - samples/sec: 8435.25 - lr: 0.000014 - momentum: 0.000000
|
186 |
+
2023-10-18 18:23:33,943 epoch 8 - iter 264/447 - loss 0.29597312 - time (sec): 6.03 - samples/sec: 8442.64 - lr: 0.000013 - momentum: 0.000000
|
187 |
+
2023-10-18 18:23:34,941 epoch 8 - iter 308/447 - loss 0.29271218 - time (sec): 7.03 - samples/sec: 8347.80 - lr: 0.000013 - momentum: 0.000000
|
188 |
+
2023-10-18 18:23:35,941 epoch 8 - iter 352/447 - loss 0.29100478 - time (sec): 8.03 - samples/sec: 8386.27 - lr: 0.000012 - momentum: 0.000000
|
189 |
+
2023-10-18 18:23:36,957 epoch 8 - iter 396/447 - loss 0.28742095 - time (sec): 9.04 - samples/sec: 8390.58 - lr: 0.000012 - momentum: 0.000000
|
190 |
+
2023-10-18 18:23:38,050 epoch 8 - iter 440/447 - loss 0.28930722 - time (sec): 10.13 - samples/sec: 8390.30 - lr: 0.000011 - momentum: 0.000000
|
191 |
+
2023-10-18 18:23:38,225 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-10-18 18:23:38,225 EPOCH 8 done: loss 0.2878 - lr: 0.000011
|
193 |
+
2023-10-18 18:23:43,523 DEV : loss 0.29474112391471863 - f1-score (micro avg) 0.3473
|
194 |
+
2023-10-18 18:23:43,547 ----------------------------------------------------------------------------------------------------
|
195 |
+
2023-10-18 18:23:44,548 epoch 9 - iter 44/447 - loss 0.25740795 - time (sec): 1.00 - samples/sec: 8141.93 - lr: 0.000011 - momentum: 0.000000
|
196 |
+
2023-10-18 18:23:45,525 epoch 9 - iter 88/447 - loss 0.27278712 - time (sec): 1.98 - samples/sec: 7858.76 - lr: 0.000010 - momentum: 0.000000
|
197 |
+
2023-10-18 18:23:46,560 epoch 9 - iter 132/447 - loss 0.26541675 - time (sec): 3.01 - samples/sec: 8036.26 - lr: 0.000010 - momentum: 0.000000
|
198 |
+
2023-10-18 18:23:47,629 epoch 9 - iter 176/447 - loss 0.27555671 - time (sec): 4.08 - samples/sec: 7930.21 - lr: 0.000009 - momentum: 0.000000
|
199 |
+
2023-10-18 18:23:48,717 epoch 9 - iter 220/447 - loss 0.27547894 - time (sec): 5.17 - samples/sec: 8030.67 - lr: 0.000008 - momentum: 0.000000
|
200 |
+
2023-10-18 18:23:49,774 epoch 9 - iter 264/447 - loss 0.27439270 - time (sec): 6.23 - samples/sec: 8141.15 - lr: 0.000008 - momentum: 0.000000
|
201 |
+
2023-10-18 18:23:50,822 epoch 9 - iter 308/447 - loss 0.27018164 - time (sec): 7.27 - samples/sec: 8134.64 - lr: 0.000007 - momentum: 0.000000
|
202 |
+
2023-10-18 18:23:51,870 epoch 9 - iter 352/447 - loss 0.26807567 - time (sec): 8.32 - samples/sec: 8095.54 - lr: 0.000007 - momentum: 0.000000
|
203 |
+
2023-10-18 18:23:52,962 epoch 9 - iter 396/447 - loss 0.27305200 - time (sec): 9.41 - samples/sec: 8151.44 - lr: 0.000006 - momentum: 0.000000
|
204 |
+
2023-10-18 18:23:53,986 epoch 9 - iter 440/447 - loss 0.27534298 - time (sec): 10.44 - samples/sec: 8199.93 - lr: 0.000006 - momentum: 0.000000
|
205 |
+
2023-10-18 18:23:54,132 ----------------------------------------------------------------------------------------------------
|
206 |
+
2023-10-18 18:23:54,133 EPOCH 9 done: loss 0.2753 - lr: 0.000006
|
207 |
+
2023-10-18 18:23:59,472 DEV : loss 0.2967955470085144 - f1-score (micro avg) 0.3451
|
208 |
+
2023-10-18 18:23:59,496 ----------------------------------------------------------------------------------------------------
|
209 |
+
2023-10-18 18:24:00,570 epoch 10 - iter 44/447 - loss 0.31147788 - time (sec): 1.07 - samples/sec: 7567.81 - lr: 0.000005 - momentum: 0.000000
|
210 |
+
2023-10-18 18:24:01,581 epoch 10 - iter 88/447 - loss 0.29350164 - time (sec): 2.08 - samples/sec: 7864.46 - lr: 0.000005 - momentum: 0.000000
|
211 |
+
2023-10-18 18:24:02,585 epoch 10 - iter 132/447 - loss 0.27414972 - time (sec): 3.09 - samples/sec: 7968.43 - lr: 0.000004 - momentum: 0.000000
|
212 |
+
2023-10-18 18:24:03,541 epoch 10 - iter 176/447 - loss 0.27134812 - time (sec): 4.05 - samples/sec: 8107.61 - lr: 0.000003 - momentum: 0.000000
|
213 |
+
2023-10-18 18:24:04,542 epoch 10 - iter 220/447 - loss 0.27511632 - time (sec): 5.05 - samples/sec: 8012.55 - lr: 0.000003 - momentum: 0.000000
|
214 |
+
2023-10-18 18:24:05,574 epoch 10 - iter 264/447 - loss 0.26854414 - time (sec): 6.08 - samples/sec: 8070.76 - lr: 0.000002 - momentum: 0.000000
|
215 |
+
2023-10-18 18:24:06,537 epoch 10 - iter 308/447 - loss 0.27296262 - time (sec): 7.04 - samples/sec: 8110.53 - lr: 0.000002 - momentum: 0.000000
|
216 |
+
2023-10-18 18:24:07,641 epoch 10 - iter 352/447 - loss 0.27183740 - time (sec): 8.14 - samples/sec: 8302.87 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-10-18 18:24:08,693 epoch 10 - iter 396/447 - loss 0.27614075 - time (sec): 9.20 - samples/sec: 8270.70 - lr: 0.000001 - momentum: 0.000000
|
218 |
+
2023-10-18 18:24:09,741 epoch 10 - iter 440/447 - loss 0.27640189 - time (sec): 10.24 - samples/sec: 8271.79 - lr: 0.000000 - momentum: 0.000000
|
219 |
+
2023-10-18 18:24:09,932 ----------------------------------------------------------------------------------------------------
|
220 |
+
2023-10-18 18:24:09,932 EPOCH 10 done: loss 0.2761 - lr: 0.000000
|
221 |
+
2023-10-18 18:24:14,905 DEV : loss 0.2940215766429901 - f1-score (micro avg) 0.3506
|
222 |
+
2023-10-18 18:24:14,929 saving best model
|
223 |
+
2023-10-18 18:24:14,992 ----------------------------------------------------------------------------------------------------
|
224 |
+
2023-10-18 18:24:14,992 Loading model from best epoch ...
|
225 |
+
2023-10-18 18:24:15,067 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
226 |
+
2023-10-18 18:24:17,305
|
227 |
+
Results:
|
228 |
+
- F-score (micro) 0.3601
|
229 |
+
- F-score (macro) 0.1639
|
230 |
+
- Accuracy 0.2303
|
231 |
+
|
232 |
+
By class:
|
233 |
+
precision recall f1-score support
|
234 |
+
|
235 |
+
loc 0.5196 0.5554 0.5369 596
|
236 |
+
pers 0.1712 0.2282 0.1956 333
|
237 |
+
org 0.0000 0.0000 0.0000 132
|
238 |
+
time 0.1500 0.0612 0.0870 49
|
239 |
+
prod 0.0000 0.0000 0.0000 66
|
240 |
+
|
241 |
+
micro avg 0.3724 0.3486 0.3601 1176
|
242 |
+
macro avg 0.1682 0.1690 0.1639 1176
|
243 |
+
weighted avg 0.3181 0.3486 0.3311 1176
|
244 |
+
|
245 |
+
2023-10-18 18:24:17,305 ----------------------------------------------------------------------------------------------------
|