Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +243 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60a7f85a6da5c41a7d519689d2a6c509f88794856b200b96b882a8de9460629b
|
3 |
+
size 443335879
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 13:13:53 0.0000 0.7518 0.1836 0.6857 0.6020 0.6411 0.4840
|
3 |
+
2 13:14:31 0.0000 0.1618 0.1280 0.6460 0.7162 0.6793 0.5357
|
4 |
+
3 13:15:09 0.0000 0.0882 0.1201 0.7469 0.7498 0.7483 0.6124
|
5 |
+
4 13:15:47 0.0000 0.0506 0.1425 0.7239 0.7709 0.7467 0.6113
|
6 |
+
5 13:16:24 0.0000 0.0352 0.1665 0.7272 0.7733 0.7495 0.6162
|
7 |
+
6 13:17:02 0.0000 0.0212 0.1730 0.7548 0.7944 0.7741 0.6480
|
8 |
+
7 13:17:39 0.0000 0.0155 0.1986 0.7874 0.7787 0.7830 0.6587
|
9 |
+
8 13:18:17 0.0000 0.0108 0.2085 0.7622 0.7920 0.7768 0.6506
|
10 |
+
9 13:18:55 0.0000 0.0070 0.2127 0.7544 0.8022 0.7776 0.6527
|
11 |
+
10 13:19:33 0.0000 0.0051 0.2154 0.7484 0.8045 0.7754 0.6500
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-13 13:13:20,057 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-13 13:13:20,058 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-13 13:13:20,058 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-13 13:13:20,058 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
53 |
+
2023-10-13 13:13:20,058 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-13 13:13:20,058 Train: 3575 sentences
|
55 |
+
2023-10-13 13:13:20,058 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-13 13:13:20,058 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-13 13:13:20,058 Training Params:
|
58 |
+
2023-10-13 13:13:20,058 - learning_rate: "3e-05"
|
59 |
+
2023-10-13 13:13:20,058 - mini_batch_size: "8"
|
60 |
+
2023-10-13 13:13:20,058 - max_epochs: "10"
|
61 |
+
2023-10-13 13:13:20,058 - shuffle: "True"
|
62 |
+
2023-10-13 13:13:20,058 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-13 13:13:20,058 Plugins:
|
64 |
+
2023-10-13 13:13:20,058 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-13 13:13:20,058 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-13 13:13:20,058 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-13 13:13:20,058 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-13 13:13:20,058 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-13 13:13:20,058 Computation:
|
70 |
+
2023-10-13 13:13:20,058 - compute on device: cuda:0
|
71 |
+
2023-10-13 13:13:20,058 - embedding storage: none
|
72 |
+
2023-10-13 13:13:20,058 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-13 13:13:20,058 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4"
|
74 |
+
2023-10-13 13:13:20,058 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-13 13:13:20,058 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-13 13:13:22,914 epoch 1 - iter 44/447 - loss 3.11777082 - time (sec): 2.85 - samples/sec: 3068.12 - lr: 0.000003 - momentum: 0.000000
|
77 |
+
2023-10-13 13:13:25,858 epoch 1 - iter 88/447 - loss 2.36193790 - time (sec): 5.80 - samples/sec: 3064.20 - lr: 0.000006 - momentum: 0.000000
|
78 |
+
2023-10-13 13:13:28,576 epoch 1 - iter 132/447 - loss 1.79092667 - time (sec): 8.52 - samples/sec: 3020.50 - lr: 0.000009 - momentum: 0.000000
|
79 |
+
2023-10-13 13:13:31,655 epoch 1 - iter 176/447 - loss 1.44848537 - time (sec): 11.60 - samples/sec: 2976.51 - lr: 0.000012 - momentum: 0.000000
|
80 |
+
2023-10-13 13:13:34,436 epoch 1 - iter 220/447 - loss 1.23228332 - time (sec): 14.38 - samples/sec: 2970.99 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-13 13:13:37,240 epoch 1 - iter 264/447 - loss 1.08886007 - time (sec): 17.18 - samples/sec: 2964.39 - lr: 0.000018 - momentum: 0.000000
|
82 |
+
2023-10-13 13:13:39,997 epoch 1 - iter 308/447 - loss 0.98213248 - time (sec): 19.94 - samples/sec: 2970.69 - lr: 0.000021 - momentum: 0.000000
|
83 |
+
2023-10-13 13:13:42,747 epoch 1 - iter 352/447 - loss 0.89561881 - time (sec): 22.69 - samples/sec: 2980.97 - lr: 0.000024 - momentum: 0.000000
|
84 |
+
2023-10-13 13:13:45,432 epoch 1 - iter 396/447 - loss 0.82242688 - time (sec): 25.37 - samples/sec: 2981.41 - lr: 0.000027 - momentum: 0.000000
|
85 |
+
2023-10-13 13:13:48,627 epoch 1 - iter 440/447 - loss 0.75951686 - time (sec): 28.57 - samples/sec: 2983.72 - lr: 0.000029 - momentum: 0.000000
|
86 |
+
2023-10-13 13:13:49,039 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-13 13:13:49,040 EPOCH 1 done: loss 0.7518 - lr: 0.000029
|
88 |
+
2023-10-13 13:13:53,953 DEV : loss 0.18360073864459991 - f1-score (micro avg) 0.6411
|
89 |
+
2023-10-13 13:13:53,978 saving best model
|
90 |
+
2023-10-13 13:13:54,320 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-13 13:13:57,283 epoch 2 - iter 44/447 - loss 0.21325634 - time (sec): 2.96 - samples/sec: 3023.79 - lr: 0.000030 - momentum: 0.000000
|
92 |
+
2023-10-13 13:14:00,394 epoch 2 - iter 88/447 - loss 0.19763757 - time (sec): 6.07 - samples/sec: 3047.06 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-10-13 13:14:02,962 epoch 2 - iter 132/447 - loss 0.18755004 - time (sec): 8.64 - samples/sec: 3031.14 - lr: 0.000029 - momentum: 0.000000
|
94 |
+
2023-10-13 13:14:05,602 epoch 2 - iter 176/447 - loss 0.19041313 - time (sec): 11.28 - samples/sec: 3055.96 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-13 13:14:08,514 epoch 2 - iter 220/447 - loss 0.18445879 - time (sec): 14.19 - samples/sec: 3035.46 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-10-13 13:14:11,208 epoch 2 - iter 264/447 - loss 0.17645831 - time (sec): 16.89 - samples/sec: 3063.78 - lr: 0.000028 - momentum: 0.000000
|
97 |
+
2023-10-13 13:14:13,825 epoch 2 - iter 308/447 - loss 0.17200425 - time (sec): 19.50 - samples/sec: 3061.76 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-13 13:14:16,387 epoch 2 - iter 352/447 - loss 0.16971408 - time (sec): 22.07 - samples/sec: 3070.68 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-10-13 13:14:19,560 epoch 2 - iter 396/447 - loss 0.16473002 - time (sec): 25.24 - samples/sec: 3044.12 - lr: 0.000027 - momentum: 0.000000
|
100 |
+
2023-10-13 13:14:22,291 epoch 2 - iter 440/447 - loss 0.16259189 - time (sec): 27.97 - samples/sec: 3047.79 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-10-13 13:14:22,795 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-13 13:14:22,796 EPOCH 2 done: loss 0.1618 - lr: 0.000027
|
103 |
+
2023-10-13 13:14:31,384 DEV : loss 0.1280011683702469 - f1-score (micro avg) 0.6793
|
104 |
+
2023-10-13 13:14:31,411 saving best model
|
105 |
+
2023-10-13 13:14:31,868 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-13 13:14:34,764 epoch 3 - iter 44/447 - loss 0.10970391 - time (sec): 2.89 - samples/sec: 2957.74 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-10-13 13:14:38,002 epoch 3 - iter 88/447 - loss 0.10095129 - time (sec): 6.13 - samples/sec: 2911.29 - lr: 0.000026 - momentum: 0.000000
|
108 |
+
2023-10-13 13:14:40,901 epoch 3 - iter 132/447 - loss 0.09159053 - time (sec): 9.03 - samples/sec: 2902.88 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-13 13:14:43,698 epoch 3 - iter 176/447 - loss 0.09005402 - time (sec): 11.83 - samples/sec: 2913.87 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-10-13 13:14:46,381 epoch 3 - iter 220/447 - loss 0.08834012 - time (sec): 14.51 - samples/sec: 2898.73 - lr: 0.000025 - momentum: 0.000000
|
111 |
+
2023-10-13 13:14:49,199 epoch 3 - iter 264/447 - loss 0.08867495 - time (sec): 17.33 - samples/sec: 2917.60 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-13 13:14:51,891 epoch 3 - iter 308/447 - loss 0.08828525 - time (sec): 20.02 - samples/sec: 2931.90 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-10-13 13:14:54,732 epoch 3 - iter 352/447 - loss 0.08402043 - time (sec): 22.86 - samples/sec: 2953.93 - lr: 0.000024 - momentum: 0.000000
|
114 |
+
2023-10-13 13:14:57,347 epoch 3 - iter 396/447 - loss 0.08793302 - time (sec): 25.48 - samples/sec: 2976.67 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-10-13 13:15:00,431 epoch 3 - iter 440/447 - loss 0.08822390 - time (sec): 28.56 - samples/sec: 2987.02 - lr: 0.000023 - momentum: 0.000000
|
116 |
+
2023-10-13 13:15:00,838 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-13 13:15:00,839 EPOCH 3 done: loss 0.0882 - lr: 0.000023
|
118 |
+
2023-10-13 13:15:09,537 DEV : loss 0.1200539767742157 - f1-score (micro avg) 0.7483
|
119 |
+
2023-10-13 13:15:09,567 saving best model
|
120 |
+
2023-10-13 13:15:09,992 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-13 13:15:12,750 epoch 4 - iter 44/447 - loss 0.04601992 - time (sec): 2.76 - samples/sec: 3061.98 - lr: 0.000023 - momentum: 0.000000
|
122 |
+
2023-10-13 13:15:15,345 epoch 4 - iter 88/447 - loss 0.05132868 - time (sec): 5.35 - samples/sec: 3066.86 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2023-10-13 13:15:18,079 epoch 4 - iter 132/447 - loss 0.04850121 - time (sec): 8.09 - samples/sec: 3088.42 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-10-13 13:15:20,701 epoch 4 - iter 176/447 - loss 0.04502986 - time (sec): 10.71 - samples/sec: 3112.42 - lr: 0.000022 - momentum: 0.000000
|
125 |
+
2023-10-13 13:15:24,117 epoch 4 - iter 220/447 - loss 0.04746775 - time (sec): 14.12 - samples/sec: 3070.89 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-13 13:15:26,903 epoch 4 - iter 264/447 - loss 0.04791562 - time (sec): 16.91 - samples/sec: 3071.67 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-10-13 13:15:29,531 epoch 4 - iter 308/447 - loss 0.04886274 - time (sec): 19.54 - samples/sec: 3060.31 - lr: 0.000021 - momentum: 0.000000
|
128 |
+
2023-10-13 13:15:32,213 epoch 4 - iter 352/447 - loss 0.04909487 - time (sec): 22.22 - samples/sec: 3052.34 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-13 13:15:35,496 epoch 4 - iter 396/447 - loss 0.04995671 - time (sec): 25.50 - samples/sec: 3031.17 - lr: 0.000020 - momentum: 0.000000
|
130 |
+
2023-10-13 13:15:38,187 epoch 4 - iter 440/447 - loss 0.05051059 - time (sec): 28.19 - samples/sec: 3023.06 - lr: 0.000020 - momentum: 0.000000
|
131 |
+
2023-10-13 13:15:38,616 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-13 13:15:38,617 EPOCH 4 done: loss 0.0506 - lr: 0.000020
|
133 |
+
2023-10-13 13:15:47,029 DEV : loss 0.14254607260227203 - f1-score (micro avg) 0.7467
|
134 |
+
2023-10-13 13:15:47,056 ----------------------------------------------------------------------------------------------------
|
135 |
+
2023-10-13 13:15:49,999 epoch 5 - iter 44/447 - loss 0.03966301 - time (sec): 2.94 - samples/sec: 3049.04 - lr: 0.000020 - momentum: 0.000000
|
136 |
+
2023-10-13 13:15:52,832 epoch 5 - iter 88/447 - loss 0.03669848 - time (sec): 5.78 - samples/sec: 2990.27 - lr: 0.000019 - momentum: 0.000000
|
137 |
+
2023-10-13 13:15:55,761 epoch 5 - iter 132/447 - loss 0.03533218 - time (sec): 8.70 - samples/sec: 3000.27 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-10-13 13:15:58,591 epoch 5 - iter 176/447 - loss 0.03429375 - time (sec): 11.53 - samples/sec: 3006.74 - lr: 0.000019 - momentum: 0.000000
|
139 |
+
2023-10-13 13:16:01,229 epoch 5 - iter 220/447 - loss 0.03499214 - time (sec): 14.17 - samples/sec: 3009.08 - lr: 0.000018 - momentum: 0.000000
|
140 |
+
2023-10-13 13:16:04,099 epoch 5 - iter 264/447 - loss 0.03588282 - time (sec): 17.04 - samples/sec: 3007.92 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-10-13 13:16:07,274 epoch 5 - iter 308/447 - loss 0.03556606 - time (sec): 20.22 - samples/sec: 2996.33 - lr: 0.000018 - momentum: 0.000000
|
142 |
+
2023-10-13 13:16:09,873 epoch 5 - iter 352/447 - loss 0.03896903 - time (sec): 22.82 - samples/sec: 3006.18 - lr: 0.000017 - momentum: 0.000000
|
143 |
+
2023-10-13 13:16:12,685 epoch 5 - iter 396/447 - loss 0.03718731 - time (sec): 25.63 - samples/sec: 2995.43 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-10-13 13:16:15,538 epoch 5 - iter 440/447 - loss 0.03556750 - time (sec): 28.48 - samples/sec: 2997.63 - lr: 0.000017 - momentum: 0.000000
|
145 |
+
2023-10-13 13:16:15,921 ----------------------------------------------------------------------------------------------------
|
146 |
+
2023-10-13 13:16:15,922 EPOCH 5 done: loss 0.0352 - lr: 0.000017
|
147 |
+
2023-10-13 13:16:24,461 DEV : loss 0.16648352146148682 - f1-score (micro avg) 0.7495
|
148 |
+
2023-10-13 13:16:24,487 saving best model
|
149 |
+
2023-10-13 13:16:24,910 ----------------------------------------------------------------------------------------------------
|
150 |
+
2023-10-13 13:16:27,776 epoch 6 - iter 44/447 - loss 0.01297918 - time (sec): 2.86 - samples/sec: 3007.92 - lr: 0.000016 - momentum: 0.000000
|
151 |
+
2023-10-13 13:16:30,760 epoch 6 - iter 88/447 - loss 0.01521816 - time (sec): 5.85 - samples/sec: 3013.80 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2023-10-13 13:16:33,450 epoch 6 - iter 132/447 - loss 0.01783763 - time (sec): 8.53 - samples/sec: 3042.85 - lr: 0.000016 - momentum: 0.000000
|
153 |
+
2023-10-13 13:16:36,642 epoch 6 - iter 176/447 - loss 0.01724718 - time (sec): 11.73 - samples/sec: 3055.21 - lr: 0.000015 - momentum: 0.000000
|
154 |
+
2023-10-13 13:16:39,440 epoch 6 - iter 220/447 - loss 0.01881627 - time (sec): 14.53 - samples/sec: 2985.20 - lr: 0.000015 - momentum: 0.000000
|
155 |
+
2023-10-13 13:16:42,158 epoch 6 - iter 264/447 - loss 0.01817880 - time (sec): 17.24 - samples/sec: 2985.53 - lr: 0.000015 - momentum: 0.000000
|
156 |
+
2023-10-13 13:16:45,022 epoch 6 - iter 308/447 - loss 0.01947892 - time (sec): 20.11 - samples/sec: 2982.50 - lr: 0.000014 - momentum: 0.000000
|
157 |
+
2023-10-13 13:16:47,824 epoch 6 - iter 352/447 - loss 0.02012745 - time (sec): 22.91 - samples/sec: 2969.62 - lr: 0.000014 - momentum: 0.000000
|
158 |
+
2023-10-13 13:16:50,622 epoch 6 - iter 396/447 - loss 0.02016141 - time (sec): 25.71 - samples/sec: 2992.05 - lr: 0.000014 - momentum: 0.000000
|
159 |
+
2023-10-13 13:16:53,327 epoch 6 - iter 440/447 - loss 0.02126196 - time (sec): 28.41 - samples/sec: 3002.50 - lr: 0.000013 - momentum: 0.000000
|
160 |
+
2023-10-13 13:16:53,729 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-10-13 13:16:53,730 EPOCH 6 done: loss 0.0212 - lr: 0.000013
|
162 |
+
2023-10-13 13:17:02,414 DEV : loss 0.173013374209404 - f1-score (micro avg) 0.7741
|
163 |
+
2023-10-13 13:17:02,440 saving best model
|
164 |
+
2023-10-13 13:17:02,868 ----------------------------------------------------------------------------------------------------
|
165 |
+
2023-10-13 13:17:06,304 epoch 7 - iter 44/447 - loss 0.02481076 - time (sec): 3.43 - samples/sec: 2891.86 - lr: 0.000013 - momentum: 0.000000
|
166 |
+
2023-10-13 13:17:09,074 epoch 7 - iter 88/447 - loss 0.01608324 - time (sec): 6.20 - samples/sec: 2875.39 - lr: 0.000013 - momentum: 0.000000
|
167 |
+
2023-10-13 13:17:12,040 epoch 7 - iter 132/447 - loss 0.01410154 - time (sec): 9.17 - samples/sec: 2899.58 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-10-13 13:17:14,929 epoch 7 - iter 176/447 - loss 0.01489213 - time (sec): 12.06 - samples/sec: 2938.16 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-10-13 13:17:17,754 epoch 7 - iter 220/447 - loss 0.01604270 - time (sec): 14.88 - samples/sec: 2952.10 - lr: 0.000012 - momentum: 0.000000
|
170 |
+
2023-10-13 13:17:20,446 epoch 7 - iter 264/447 - loss 0.01618986 - time (sec): 17.58 - samples/sec: 2938.06 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-10-13 13:17:23,179 epoch 7 - iter 308/447 - loss 0.01644546 - time (sec): 20.31 - samples/sec: 2961.42 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-10-13 13:17:25,924 epoch 7 - iter 352/447 - loss 0.01537412 - time (sec): 23.05 - samples/sec: 2965.75 - lr: 0.000011 - momentum: 0.000000
|
173 |
+
2023-10-13 13:17:28,546 epoch 7 - iter 396/447 - loss 0.01579262 - time (sec): 25.68 - samples/sec: 2974.59 - lr: 0.000010 - momentum: 0.000000
|
174 |
+
2023-10-13 13:17:31,395 epoch 7 - iter 440/447 - loss 0.01544474 - time (sec): 28.53 - samples/sec: 2995.90 - lr: 0.000010 - momentum: 0.000000
|
175 |
+
2023-10-13 13:17:31,781 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-10-13 13:17:31,782 EPOCH 7 done: loss 0.0155 - lr: 0.000010
|
177 |
+
2023-10-13 13:17:39,921 DEV : loss 0.1985795646905899 - f1-score (micro avg) 0.783
|
178 |
+
2023-10-13 13:17:39,950 saving best model
|
179 |
+
2023-10-13 13:17:40,398 ----------------------------------------------------------------------------------------------------
|
180 |
+
2023-10-13 13:17:43,232 epoch 8 - iter 44/447 - loss 0.00957408 - time (sec): 2.83 - samples/sec: 3033.73 - lr: 0.000010 - momentum: 0.000000
|
181 |
+
2023-10-13 13:17:46,091 epoch 8 - iter 88/447 - loss 0.00922003 - time (sec): 5.69 - samples/sec: 3010.78 - lr: 0.000009 - momentum: 0.000000
|
182 |
+
2023-10-13 13:17:48,808 epoch 8 - iter 132/447 - loss 0.01038901 - time (sec): 8.41 - samples/sec: 3015.07 - lr: 0.000009 - momentum: 0.000000
|
183 |
+
2023-10-13 13:17:51,553 epoch 8 - iter 176/447 - loss 0.01041656 - time (sec): 11.15 - samples/sec: 3004.15 - lr: 0.000009 - momentum: 0.000000
|
184 |
+
2023-10-13 13:17:54,368 epoch 8 - iter 220/447 - loss 0.00978835 - time (sec): 13.97 - samples/sec: 2991.67 - lr: 0.000008 - momentum: 0.000000
|
185 |
+
2023-10-13 13:17:57,374 epoch 8 - iter 264/447 - loss 0.00983571 - time (sec): 16.97 - samples/sec: 2957.65 - lr: 0.000008 - momentum: 0.000000
|
186 |
+
2023-10-13 13:18:00,184 epoch 8 - iter 308/447 - loss 0.00935734 - time (sec): 19.78 - samples/sec: 2954.35 - lr: 0.000008 - momentum: 0.000000
|
187 |
+
2023-10-13 13:18:03,374 epoch 8 - iter 352/447 - loss 0.01020653 - time (sec): 22.97 - samples/sec: 2943.90 - lr: 0.000007 - momentum: 0.000000
|
188 |
+
2023-10-13 13:18:06,439 epoch 8 - iter 396/447 - loss 0.01083975 - time (sec): 26.04 - samples/sec: 2945.85 - lr: 0.000007 - momentum: 0.000000
|
189 |
+
2023-10-13 13:18:09,151 epoch 8 - iter 440/447 - loss 0.01083258 - time (sec): 28.75 - samples/sec: 2958.89 - lr: 0.000007 - momentum: 0.000000
|
190 |
+
2023-10-13 13:18:09,642 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-10-13 13:18:09,643 EPOCH 8 done: loss 0.0108 - lr: 0.000007
|
192 |
+
2023-10-13 13:18:17,739 DEV : loss 0.2084827721118927 - f1-score (micro avg) 0.7768
|
193 |
+
2023-10-13 13:18:17,767 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-13 13:18:20,478 epoch 9 - iter 44/447 - loss 0.00612637 - time (sec): 2.71 - samples/sec: 3061.27 - lr: 0.000006 - momentum: 0.000000
|
195 |
+
2023-10-13 13:18:23,449 epoch 9 - iter 88/447 - loss 0.00545493 - time (sec): 5.68 - samples/sec: 2988.83 - lr: 0.000006 - momentum: 0.000000
|
196 |
+
2023-10-13 13:18:26,013 epoch 9 - iter 132/447 - loss 0.00810978 - time (sec): 8.24 - samples/sec: 3022.80 - lr: 0.000006 - momentum: 0.000000
|
197 |
+
2023-10-13 13:18:28,792 epoch 9 - iter 176/447 - loss 0.00943692 - time (sec): 11.02 - samples/sec: 3017.39 - lr: 0.000005 - momentum: 0.000000
|
198 |
+
2023-10-13 13:18:31,737 epoch 9 - iter 220/447 - loss 0.00827507 - time (sec): 13.97 - samples/sec: 3011.35 - lr: 0.000005 - momentum: 0.000000
|
199 |
+
2023-10-13 13:18:34,594 epoch 9 - iter 264/447 - loss 0.00745688 - time (sec): 16.83 - samples/sec: 2998.27 - lr: 0.000005 - momentum: 0.000000
|
200 |
+
2023-10-13 13:18:37,258 epoch 9 - iter 308/447 - loss 0.00768552 - time (sec): 19.49 - samples/sec: 3026.07 - lr: 0.000004 - momentum: 0.000000
|
201 |
+
2023-10-13 13:18:41,084 epoch 9 - iter 352/447 - loss 0.00760993 - time (sec): 23.32 - samples/sec: 2963.42 - lr: 0.000004 - momentum: 0.000000
|
202 |
+
2023-10-13 13:18:43,947 epoch 9 - iter 396/447 - loss 0.00728736 - time (sec): 26.18 - samples/sec: 2954.39 - lr: 0.000004 - momentum: 0.000000
|
203 |
+
2023-10-13 13:18:46,795 epoch 9 - iter 440/447 - loss 0.00694997 - time (sec): 29.03 - samples/sec: 2944.30 - lr: 0.000003 - momentum: 0.000000
|
204 |
+
2023-10-13 13:18:47,199 ----------------------------------------------------------------------------------------------------
|
205 |
+
2023-10-13 13:18:47,199 EPOCH 9 done: loss 0.0070 - lr: 0.000003
|
206 |
+
2023-10-13 13:18:55,583 DEV : loss 0.2126864343881607 - f1-score (micro avg) 0.7776
|
207 |
+
2023-10-13 13:18:55,611 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-13 13:18:58,894 epoch 10 - iter 44/447 - loss 0.00635944 - time (sec): 3.28 - samples/sec: 3012.37 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-10-13 13:19:02,008 epoch 10 - iter 88/447 - loss 0.00527678 - time (sec): 6.40 - samples/sec: 2899.98 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-10-13 13:19:04,861 epoch 10 - iter 132/447 - loss 0.00649806 - time (sec): 9.25 - samples/sec: 2899.02 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-13 13:19:07,541 epoch 10 - iter 176/447 - loss 0.00621582 - time (sec): 11.93 - samples/sec: 2918.26 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-13 13:19:10,370 epoch 10 - iter 220/447 - loss 0.00571437 - time (sec): 14.76 - samples/sec: 2934.41 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-13 13:19:13,065 epoch 10 - iter 264/447 - loss 0.00591055 - time (sec): 17.45 - samples/sec: 2939.79 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-13 13:19:15,840 epoch 10 - iter 308/447 - loss 0.00566945 - time (sec): 20.23 - samples/sec: 2941.50 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-13 13:19:18,771 epoch 10 - iter 352/447 - loss 0.00536572 - time (sec): 23.16 - samples/sec: 2940.96 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-13 13:19:21,445 epoch 10 - iter 396/447 - loss 0.00529827 - time (sec): 25.83 - samples/sec: 2959.09 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-13 13:19:24,347 epoch 10 - iter 440/447 - loss 0.00512907 - time (sec): 28.73 - samples/sec: 2976.79 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-10-13 13:19:24,753 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-10-13 13:19:24,753 EPOCH 10 done: loss 0.0051 - lr: 0.000000
|
220 |
+
2023-10-13 13:19:33,426 DEV : loss 0.2154415100812912 - f1-score (micro avg) 0.7754
|
221 |
+
2023-10-13 13:19:33,796 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-13 13:19:33,798 Loading model from best epoch ...
|
223 |
+
2023-10-13 13:19:35,452 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
224 |
+
2023-10-13 13:19:40,515
|
225 |
+
Results:
|
226 |
+
- F-score (micro) 0.7437
|
227 |
+
- F-score (macro) 0.6536
|
228 |
+
- Accuracy 0.6094
|
229 |
+
|
230 |
+
By class:
|
231 |
+
precision recall f1-score support
|
232 |
+
|
233 |
+
loc 0.8596 0.8322 0.8457 596
|
234 |
+
pers 0.6605 0.7538 0.7041 333
|
235 |
+
org 0.5310 0.4545 0.4898 132
|
236 |
+
prod 0.5957 0.4242 0.4956 66
|
237 |
+
time 0.7115 0.7551 0.7327 49
|
238 |
+
|
239 |
+
micro avg 0.7459 0.7415 0.7437 1176
|
240 |
+
macro avg 0.6717 0.6440 0.6536 1176
|
241 |
+
weighted avg 0.7454 0.7415 0.7413 1176
|
242 |
+
|
243 |
+
2023-10-13 13:19:40,515 ----------------------------------------------------------------------------------------------------
|