Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +244 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5eec8fb3f58cfde3282caa7cffd4d91f878b83fd31fdb795bd770dadeaf0904
|
3 |
+
size 443335879
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 12:42:05 0.0000 0.6927 0.1951 0.6649 0.5927 0.6267 0.4691
|
3 |
+
2 12:42:43 0.0000 0.1650 0.1415 0.6406 0.6927 0.6657 0.5139
|
4 |
+
3 12:43:22 0.0000 0.0897 0.1257 0.7442 0.7326 0.7384 0.6057
|
5 |
+
4 12:44:00 0.0000 0.0535 0.1439 0.7615 0.7740 0.7677 0.6429
|
6 |
+
5 12:44:38 0.0000 0.0340 0.1617 0.7771 0.7795 0.7783 0.6525
|
7 |
+
6 12:45:16 0.0000 0.0244 0.1754 0.7720 0.7811 0.7765 0.6495
|
8 |
+
7 12:45:53 0.0000 0.0152 0.1842 0.7752 0.7764 0.7758 0.6516
|
9 |
+
8 12:46:31 0.0000 0.0093 0.2056 0.7804 0.7889 0.7846 0.6629
|
10 |
+
9 12:47:09 0.0000 0.0071 0.2144 0.7879 0.7873 0.7876 0.6660
|
11 |
+
10 12:47:47 0.0000 0.0052 0.2112 0.7728 0.7952 0.7838 0.6621
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-13 12:41:31,655 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-13 12:41:31,656 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-13 12:41:31,656 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-13 12:41:31,656 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
53 |
+
2023-10-13 12:41:31,656 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-13 12:41:31,656 Train: 3575 sentences
|
55 |
+
2023-10-13 12:41:31,656 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-13 12:41:31,656 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-13 12:41:31,656 Training Params:
|
58 |
+
2023-10-13 12:41:31,656 - learning_rate: "3e-05"
|
59 |
+
2023-10-13 12:41:31,656 - mini_batch_size: "8"
|
60 |
+
2023-10-13 12:41:31,656 - max_epochs: "10"
|
61 |
+
2023-10-13 12:41:31,656 - shuffle: "True"
|
62 |
+
2023-10-13 12:41:31,656 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-13 12:41:31,656 Plugins:
|
64 |
+
2023-10-13 12:41:31,656 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-13 12:41:31,656 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-13 12:41:31,656 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-13 12:41:31,657 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-13 12:41:31,657 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-13 12:41:31,657 Computation:
|
70 |
+
2023-10-13 12:41:31,657 - compute on device: cuda:0
|
71 |
+
2023-10-13 12:41:31,657 - embedding storage: none
|
72 |
+
2023-10-13 12:41:31,657 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-13 12:41:31,657 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
|
74 |
+
2023-10-13 12:41:31,657 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-13 12:41:31,657 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-13 12:41:34,383 epoch 1 - iter 44/447 - loss 2.86252177 - time (sec): 2.73 - samples/sec: 3026.88 - lr: 0.000003 - momentum: 0.000000
|
77 |
+
2023-10-13 12:41:37,304 epoch 1 - iter 88/447 - loss 2.08375789 - time (sec): 5.65 - samples/sec: 3029.24 - lr: 0.000006 - momentum: 0.000000
|
78 |
+
2023-10-13 12:41:39,959 epoch 1 - iter 132/447 - loss 1.59708301 - time (sec): 8.30 - samples/sec: 3013.37 - lr: 0.000009 - momentum: 0.000000
|
79 |
+
2023-10-13 12:41:42,919 epoch 1 - iter 176/447 - loss 1.27742097 - time (sec): 11.26 - samples/sec: 3070.12 - lr: 0.000012 - momentum: 0.000000
|
80 |
+
2023-10-13 12:41:45,863 epoch 1 - iter 220/447 - loss 1.09002352 - time (sec): 14.21 - samples/sec: 3048.86 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-13 12:41:48,731 epoch 1 - iter 264/447 - loss 0.96186677 - time (sec): 17.07 - samples/sec: 3044.44 - lr: 0.000018 - momentum: 0.000000
|
82 |
+
2023-10-13 12:41:51,437 epoch 1 - iter 308/447 - loss 0.87551581 - time (sec): 19.78 - samples/sec: 3033.31 - lr: 0.000021 - momentum: 0.000000
|
83 |
+
2023-10-13 12:41:54,379 epoch 1 - iter 352/447 - loss 0.81029456 - time (sec): 22.72 - samples/sec: 2996.66 - lr: 0.000024 - momentum: 0.000000
|
84 |
+
2023-10-13 12:41:57,492 epoch 1 - iter 396/447 - loss 0.74501254 - time (sec): 25.83 - samples/sec: 2986.20 - lr: 0.000027 - momentum: 0.000000
|
85 |
+
2023-10-13 12:42:00,160 epoch 1 - iter 440/447 - loss 0.69746191 - time (sec): 28.50 - samples/sec: 2996.51 - lr: 0.000029 - momentum: 0.000000
|
86 |
+
2023-10-13 12:42:00,562 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-13 12:42:00,563 EPOCH 1 done: loss 0.6927 - lr: 0.000029
|
88 |
+
2023-10-13 12:42:05,856 DEV : loss 0.19505180418491364 - f1-score (micro avg) 0.6267
|
89 |
+
2023-10-13 12:42:05,882 saving best model
|
90 |
+
2023-10-13 12:42:06,236 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-13 12:42:09,017 epoch 2 - iter 44/447 - loss 0.21696724 - time (sec): 2.78 - samples/sec: 2924.66 - lr: 0.000030 - momentum: 0.000000
|
92 |
+
2023-10-13 12:42:11,819 epoch 2 - iter 88/447 - loss 0.20487957 - time (sec): 5.58 - samples/sec: 2946.26 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-10-13 12:42:14,636 epoch 2 - iter 132/447 - loss 0.19251978 - time (sec): 8.40 - samples/sec: 2958.63 - lr: 0.000029 - momentum: 0.000000
|
94 |
+
2023-10-13 12:42:17,702 epoch 2 - iter 176/447 - loss 0.17906352 - time (sec): 11.46 - samples/sec: 2901.31 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-13 12:42:20,409 epoch 2 - iter 220/447 - loss 0.17778899 - time (sec): 14.17 - samples/sec: 2925.37 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-10-13 12:42:23,246 epoch 2 - iter 264/447 - loss 0.17239185 - time (sec): 17.01 - samples/sec: 2930.20 - lr: 0.000028 - momentum: 0.000000
|
97 |
+
2023-10-13 12:42:25,994 epoch 2 - iter 308/447 - loss 0.17298603 - time (sec): 19.76 - samples/sec: 2936.17 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-13 12:42:29,071 epoch 2 - iter 352/447 - loss 0.16720639 - time (sec): 22.83 - samples/sec: 2937.10 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-10-13 12:42:31,912 epoch 2 - iter 396/447 - loss 0.16724068 - time (sec): 25.67 - samples/sec: 2988.06 - lr: 0.000027 - momentum: 0.000000
|
100 |
+
2023-10-13 12:42:34,661 epoch 2 - iter 440/447 - loss 0.16528204 - time (sec): 28.42 - samples/sec: 3000.44 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-10-13 12:42:35,128 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-13 12:42:35,128 EPOCH 2 done: loss 0.1650 - lr: 0.000027
|
103 |
+
2023-10-13 12:42:43,746 DEV : loss 0.14146439731121063 - f1-score (micro avg) 0.6657
|
104 |
+
2023-10-13 12:42:43,775 saving best model
|
105 |
+
2023-10-13 12:42:44,193 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-13 12:42:46,901 epoch 3 - iter 44/447 - loss 0.10202154 - time (sec): 2.71 - samples/sec: 3013.94 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-10-13 12:42:49,545 epoch 3 - iter 88/447 - loss 0.09540967 - time (sec): 5.35 - samples/sec: 2993.34 - lr: 0.000026 - momentum: 0.000000
|
108 |
+
2023-10-13 12:42:52,480 epoch 3 - iter 132/447 - loss 0.09869171 - time (sec): 8.28 - samples/sec: 2988.36 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-13 12:42:55,163 epoch 3 - iter 176/447 - loss 0.10009313 - time (sec): 10.97 - samples/sec: 3015.11 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-10-13 12:42:57,900 epoch 3 - iter 220/447 - loss 0.10031670 - time (sec): 13.70 - samples/sec: 2996.70 - lr: 0.000025 - momentum: 0.000000
|
111 |
+
2023-10-13 12:43:00,688 epoch 3 - iter 264/447 - loss 0.09570394 - time (sec): 16.49 - samples/sec: 3021.04 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-13 12:43:03,521 epoch 3 - iter 308/447 - loss 0.09263551 - time (sec): 19.32 - samples/sec: 3015.52 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-10-13 12:43:06,404 epoch 3 - iter 352/447 - loss 0.09283022 - time (sec): 22.21 - samples/sec: 3003.11 - lr: 0.000024 - momentum: 0.000000
|
114 |
+
2023-10-13 12:43:09,295 epoch 3 - iter 396/447 - loss 0.08983680 - time (sec): 25.10 - samples/sec: 3009.43 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-10-13 12:43:12,073 epoch 3 - iter 440/447 - loss 0.09082591 - time (sec): 27.88 - samples/sec: 3018.36 - lr: 0.000023 - momentum: 0.000000
|
116 |
+
2023-10-13 12:43:12,851 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-13 12:43:12,851 EPOCH 3 done: loss 0.0897 - lr: 0.000023
|
118 |
+
2023-10-13 12:43:22,018 DEV : loss 0.1257464587688446 - f1-score (micro avg) 0.7384
|
119 |
+
2023-10-13 12:43:22,051 saving best model
|
120 |
+
2023-10-13 12:43:22,459 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-13 12:43:25,496 epoch 4 - iter 44/447 - loss 0.06020034 - time (sec): 3.04 - samples/sec: 2684.53 - lr: 0.000023 - momentum: 0.000000
|
122 |
+
2023-10-13 12:43:28,410 epoch 4 - iter 88/447 - loss 0.06022402 - time (sec): 5.95 - samples/sec: 2785.84 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2023-10-13 12:43:31,098 epoch 4 - iter 132/447 - loss 0.05742048 - time (sec): 8.64 - samples/sec: 2869.36 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-10-13 12:43:34,344 epoch 4 - iter 176/447 - loss 0.05712786 - time (sec): 11.88 - samples/sec: 2929.12 - lr: 0.000022 - momentum: 0.000000
|
125 |
+
2023-10-13 12:43:37,147 epoch 4 - iter 220/447 - loss 0.05283087 - time (sec): 14.69 - samples/sec: 2943.10 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-13 12:43:40,002 epoch 4 - iter 264/447 - loss 0.05318470 - time (sec): 17.54 - samples/sec: 2944.15 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-10-13 12:43:42,801 epoch 4 - iter 308/447 - loss 0.05227936 - time (sec): 20.34 - samples/sec: 2954.65 - lr: 0.000021 - momentum: 0.000000
|
128 |
+
2023-10-13 12:43:45,653 epoch 4 - iter 352/447 - loss 0.05160845 - time (sec): 23.19 - samples/sec: 2949.49 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-13 12:43:48,609 epoch 4 - iter 396/447 - loss 0.05224703 - time (sec): 26.15 - samples/sec: 2957.04 - lr: 0.000020 - momentum: 0.000000
|
130 |
+
2023-10-13 12:43:51,250 epoch 4 - iter 440/447 - loss 0.05330500 - time (sec): 28.79 - samples/sec: 2965.16 - lr: 0.000020 - momentum: 0.000000
|
131 |
+
2023-10-13 12:43:51,663 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-13 12:43:51,663 EPOCH 4 done: loss 0.0535 - lr: 0.000020
|
133 |
+
2023-10-13 12:44:00,532 DEV : loss 0.14387159049510956 - f1-score (micro avg) 0.7677
|
134 |
+
2023-10-13 12:44:00,559 saving best model
|
135 |
+
2023-10-13 12:44:00,978 ----------------------------------------------------------------------------------------------------
|
136 |
+
2023-10-13 12:44:03,885 epoch 5 - iter 44/447 - loss 0.04206078 - time (sec): 2.91 - samples/sec: 2913.13 - lr: 0.000020 - momentum: 0.000000
|
137 |
+
2023-10-13 12:44:06,598 epoch 5 - iter 88/447 - loss 0.03343777 - time (sec): 5.62 - samples/sec: 2946.94 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-10-13 12:44:09,347 epoch 5 - iter 132/447 - loss 0.03138511 - time (sec): 8.37 - samples/sec: 2986.43 - lr: 0.000019 - momentum: 0.000000
|
139 |
+
2023-10-13 12:44:12,075 epoch 5 - iter 176/447 - loss 0.03300357 - time (sec): 11.10 - samples/sec: 2967.47 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-10-13 12:44:15,150 epoch 5 - iter 220/447 - loss 0.03298000 - time (sec): 14.17 - samples/sec: 2974.89 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-10-13 12:44:17,806 epoch 5 - iter 264/447 - loss 0.03394846 - time (sec): 16.83 - samples/sec: 2980.12 - lr: 0.000018 - momentum: 0.000000
|
142 |
+
2023-10-13 12:44:20,488 epoch 5 - iter 308/447 - loss 0.03350148 - time (sec): 19.51 - samples/sec: 2994.44 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-10-13 12:44:23,656 epoch 5 - iter 352/447 - loss 0.03406508 - time (sec): 22.68 - samples/sec: 3003.88 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-10-13 12:44:26,614 epoch 5 - iter 396/447 - loss 0.03446389 - time (sec): 25.63 - samples/sec: 3012.96 - lr: 0.000017 - momentum: 0.000000
|
145 |
+
2023-10-13 12:44:29,587 epoch 5 - iter 440/447 - loss 0.03444354 - time (sec): 28.61 - samples/sec: 2983.31 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-10-13 12:44:29,981 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-10-13 12:44:29,981 EPOCH 5 done: loss 0.0340 - lr: 0.000017
|
148 |
+
2023-10-13 12:44:38,623 DEV : loss 0.16171278059482574 - f1-score (micro avg) 0.7783
|
149 |
+
2023-10-13 12:44:38,651 saving best model
|
150 |
+
2023-10-13 12:44:39,090 ----------------------------------------------------------------------------------------------------
|
151 |
+
2023-10-13 12:44:42,275 epoch 6 - iter 44/447 - loss 0.02199878 - time (sec): 3.18 - samples/sec: 3022.58 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2023-10-13 12:44:45,000 epoch 6 - iter 88/447 - loss 0.01791271 - time (sec): 5.91 - samples/sec: 3016.28 - lr: 0.000016 - momentum: 0.000000
|
153 |
+
2023-10-13 12:44:47,967 epoch 6 - iter 132/447 - loss 0.01908459 - time (sec): 8.88 - samples/sec: 3001.10 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2023-10-13 12:44:50,765 epoch 6 - iter 176/447 - loss 0.02371749 - time (sec): 11.67 - samples/sec: 3033.68 - lr: 0.000015 - momentum: 0.000000
|
155 |
+
2023-10-13 12:44:53,605 epoch 6 - iter 220/447 - loss 0.02416858 - time (sec): 14.51 - samples/sec: 3058.44 - lr: 0.000015 - momentum: 0.000000
|
156 |
+
2023-10-13 12:44:56,283 epoch 6 - iter 264/447 - loss 0.02335894 - time (sec): 17.19 - samples/sec: 3043.29 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2023-10-13 12:44:59,072 epoch 6 - iter 308/447 - loss 0.02268652 - time (sec): 19.98 - samples/sec: 3016.88 - lr: 0.000014 - momentum: 0.000000
|
158 |
+
2023-10-13 12:45:01,767 epoch 6 - iter 352/447 - loss 0.02424439 - time (sec): 22.68 - samples/sec: 3009.53 - lr: 0.000014 - momentum: 0.000000
|
159 |
+
2023-10-13 12:45:04,569 epoch 6 - iter 396/447 - loss 0.02494761 - time (sec): 25.48 - samples/sec: 3020.77 - lr: 0.000014 - momentum: 0.000000
|
160 |
+
2023-10-13 12:45:07,181 epoch 6 - iter 440/447 - loss 0.02450484 - time (sec): 28.09 - samples/sec: 3020.74 - lr: 0.000013 - momentum: 0.000000
|
161 |
+
2023-10-13 12:45:07,807 ----------------------------------------------------------------------------------------------------
|
162 |
+
2023-10-13 12:45:07,807 EPOCH 6 done: loss 0.0244 - lr: 0.000013
|
163 |
+
2023-10-13 12:45:16,042 DEV : loss 0.17539535462856293 - f1-score (micro avg) 0.7765
|
164 |
+
2023-10-13 12:45:16,072 ----------------------------------------------------------------------------------------------------
|
165 |
+
2023-10-13 12:45:19,440 epoch 7 - iter 44/447 - loss 0.01357369 - time (sec): 3.37 - samples/sec: 2730.95 - lr: 0.000013 - momentum: 0.000000
|
166 |
+
2023-10-13 12:45:22,746 epoch 7 - iter 88/447 - loss 0.01403634 - time (sec): 6.67 - samples/sec: 2843.58 - lr: 0.000013 - momentum: 0.000000
|
167 |
+
2023-10-13 12:45:25,595 epoch 7 - iter 132/447 - loss 0.01539611 - time (sec): 9.52 - samples/sec: 2903.29 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-10-13 12:45:28,448 epoch 7 - iter 176/447 - loss 0.01710186 - time (sec): 12.38 - samples/sec: 2971.82 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-10-13 12:45:31,550 epoch 7 - iter 220/447 - loss 0.01634294 - time (sec): 15.48 - samples/sec: 2950.74 - lr: 0.000012 - momentum: 0.000000
|
170 |
+
2023-10-13 12:45:34,209 epoch 7 - iter 264/447 - loss 0.01602423 - time (sec): 18.14 - samples/sec: 2939.09 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-10-13 12:45:36,766 epoch 7 - iter 308/447 - loss 0.01550904 - time (sec): 20.69 - samples/sec: 2950.56 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-10-13 12:45:39,529 epoch 7 - iter 352/447 - loss 0.01612650 - time (sec): 23.46 - samples/sec: 2954.33 - lr: 0.000011 - momentum: 0.000000
|
173 |
+
2023-10-13 12:45:42,057 epoch 7 - iter 396/447 - loss 0.01558782 - time (sec): 25.98 - samples/sec: 2967.20 - lr: 0.000010 - momentum: 0.000000
|
174 |
+
2023-10-13 12:45:44,752 epoch 7 - iter 440/447 - loss 0.01530422 - time (sec): 28.68 - samples/sec: 2965.04 - lr: 0.000010 - momentum: 0.000000
|
175 |
+
2023-10-13 12:45:45,265 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-10-13 12:45:45,265 EPOCH 7 done: loss 0.0152 - lr: 0.000010
|
177 |
+
2023-10-13 12:45:53,827 DEV : loss 0.18422970175743103 - f1-score (micro avg) 0.7758
|
178 |
+
2023-10-13 12:45:53,857 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-13 12:45:56,629 epoch 8 - iter 44/447 - loss 0.00798763 - time (sec): 2.77 - samples/sec: 3120.73 - lr: 0.000010 - momentum: 0.000000
|
180 |
+
2023-10-13 12:45:59,360 epoch 8 - iter 88/447 - loss 0.00777261 - time (sec): 5.50 - samples/sec: 3050.62 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-10-13 12:46:03,058 epoch 8 - iter 132/447 - loss 0.00764591 - time (sec): 9.20 - samples/sec: 2909.35 - lr: 0.000009 - momentum: 0.000000
|
182 |
+
2023-10-13 12:46:06,043 epoch 8 - iter 176/447 - loss 0.00851798 - time (sec): 12.18 - samples/sec: 2888.94 - lr: 0.000009 - momentum: 0.000000
|
183 |
+
2023-10-13 12:46:08,754 epoch 8 - iter 220/447 - loss 0.00875116 - time (sec): 14.90 - samples/sec: 2926.03 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-10-13 12:46:11,769 epoch 8 - iter 264/447 - loss 0.00970690 - time (sec): 17.91 - samples/sec: 2922.91 - lr: 0.000008 - momentum: 0.000000
|
185 |
+
2023-10-13 12:46:14,532 epoch 8 - iter 308/447 - loss 0.00932691 - time (sec): 20.67 - samples/sec: 2946.73 - lr: 0.000008 - momentum: 0.000000
|
186 |
+
2023-10-13 12:46:17,149 epoch 8 - iter 352/447 - loss 0.00886594 - time (sec): 23.29 - samples/sec: 2958.75 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-10-13 12:46:19,955 epoch 8 - iter 396/447 - loss 0.00894768 - time (sec): 26.10 - samples/sec: 2967.27 - lr: 0.000007 - momentum: 0.000000
|
188 |
+
2023-10-13 12:46:22,571 epoch 8 - iter 440/447 - loss 0.00921656 - time (sec): 28.71 - samples/sec: 2972.85 - lr: 0.000007 - momentum: 0.000000
|
189 |
+
2023-10-13 12:46:22,952 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-10-13 12:46:22,952 EPOCH 8 done: loss 0.0093 - lr: 0.000007
|
191 |
+
2023-10-13 12:46:31,318 DEV : loss 0.2055710256099701 - f1-score (micro avg) 0.7846
|
192 |
+
2023-10-13 12:46:31,349 saving best model
|
193 |
+
2023-10-13 12:46:31,806 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-13 12:46:34,789 epoch 9 - iter 44/447 - loss 0.00632862 - time (sec): 2.98 - samples/sec: 2741.13 - lr: 0.000006 - momentum: 0.000000
|
195 |
+
2023-10-13 12:46:38,014 epoch 9 - iter 88/447 - loss 0.00391427 - time (sec): 6.21 - samples/sec: 2820.55 - lr: 0.000006 - momentum: 0.000000
|
196 |
+
2023-10-13 12:46:40,912 epoch 9 - iter 132/447 - loss 0.00600799 - time (sec): 9.10 - samples/sec: 2861.99 - lr: 0.000006 - momentum: 0.000000
|
197 |
+
2023-10-13 12:46:43,703 epoch 9 - iter 176/447 - loss 0.00647352 - time (sec): 11.90 - samples/sec: 2895.16 - lr: 0.000005 - momentum: 0.000000
|
198 |
+
2023-10-13 12:46:46,314 epoch 9 - iter 220/447 - loss 0.00669799 - time (sec): 14.51 - samples/sec: 2947.90 - lr: 0.000005 - momentum: 0.000000
|
199 |
+
2023-10-13 12:46:48,942 epoch 9 - iter 264/447 - loss 0.00717437 - time (sec): 17.13 - samples/sec: 2969.34 - lr: 0.000005 - momentum: 0.000000
|
200 |
+
2023-10-13 12:46:51,618 epoch 9 - iter 308/447 - loss 0.00633304 - time (sec): 19.81 - samples/sec: 2976.81 - lr: 0.000004 - momentum: 0.000000
|
201 |
+
2023-10-13 12:46:54,292 epoch 9 - iter 352/447 - loss 0.00630348 - time (sec): 22.48 - samples/sec: 2987.23 - lr: 0.000004 - momentum: 0.000000
|
202 |
+
2023-10-13 12:46:57,800 epoch 9 - iter 396/447 - loss 0.00673031 - time (sec): 25.99 - samples/sec: 2963.79 - lr: 0.000004 - momentum: 0.000000
|
203 |
+
2023-10-13 12:47:00,643 epoch 9 - iter 440/447 - loss 0.00677427 - time (sec): 28.84 - samples/sec: 2958.97 - lr: 0.000003 - momentum: 0.000000
|
204 |
+
2023-10-13 12:47:01,044 ----------------------------------------------------------------------------------------------------
|
205 |
+
2023-10-13 12:47:01,044 EPOCH 9 done: loss 0.0071 - lr: 0.000003
|
206 |
+
2023-10-13 12:47:09,395 DEV : loss 0.21442939341068268 - f1-score (micro avg) 0.7876
|
207 |
+
2023-10-13 12:47:09,425 saving best model
|
208 |
+
2023-10-13 12:47:09,938 ----------------------------------------------------------------------------------------------------
|
209 |
+
2023-10-13 12:47:12,923 epoch 10 - iter 44/447 - loss 0.00347708 - time (sec): 2.98 - samples/sec: 3022.65 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-10-13 12:47:15,674 epoch 10 - iter 88/447 - loss 0.00567608 - time (sec): 5.73 - samples/sec: 3017.03 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-10-13 12:47:18,567 epoch 10 - iter 132/447 - loss 0.00482620 - time (sec): 8.63 - samples/sec: 2983.60 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-13 12:47:21,552 epoch 10 - iter 176/447 - loss 0.00604485 - time (sec): 11.61 - samples/sec: 2982.37 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-13 12:47:24,150 epoch 10 - iter 220/447 - loss 0.00591778 - time (sec): 14.21 - samples/sec: 3001.57 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-13 12:47:26,840 epoch 10 - iter 264/447 - loss 0.00602543 - time (sec): 16.90 - samples/sec: 3005.87 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-13 12:47:29,663 epoch 10 - iter 308/447 - loss 0.00564455 - time (sec): 19.72 - samples/sec: 3012.65 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-13 12:47:33,086 epoch 10 - iter 352/447 - loss 0.00531102 - time (sec): 23.15 - samples/sec: 3009.37 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-10-13 12:47:35,778 epoch 10 - iter 396/447 - loss 0.00565506 - time (sec): 25.84 - samples/sec: 2999.81 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-10-13 12:47:38,391 epoch 10 - iter 440/447 - loss 0.00523144 - time (sec): 28.45 - samples/sec: 2997.36 - lr: 0.000000 - momentum: 0.000000
|
219 |
+
2023-10-13 12:47:38,804 ----------------------------------------------------------------------------------------------------
|
220 |
+
2023-10-13 12:47:38,804 EPOCH 10 done: loss 0.0052 - lr: 0.000000
|
221 |
+
2023-10-13 12:47:47,440 DEV : loss 0.21124331653118134 - f1-score (micro avg) 0.7838
|
222 |
+
2023-10-13 12:47:47,791 ----------------------------------------------------------------------------------------------------
|
223 |
+
2023-10-13 12:47:47,792 Loading model from best epoch ...
|
224 |
+
2023-10-13 12:47:49,218 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
225 |
+
2023-10-13 12:47:54,501
|
226 |
+
Results:
|
227 |
+
- F-score (micro) 0.7514
|
228 |
+
- F-score (macro) 0.6796
|
229 |
+
- Accuracy 0.6216
|
230 |
+
|
231 |
+
By class:
|
232 |
+
precision recall f1-score support
|
233 |
+
|
234 |
+
loc 0.8401 0.8289 0.8345 596
|
235 |
+
pers 0.6885 0.7568 0.7210 333
|
236 |
+
org 0.5455 0.5455 0.5455 132
|
237 |
+
prod 0.7021 0.5000 0.5841 66
|
238 |
+
time 0.6923 0.7347 0.7129 49
|
239 |
+
|
240 |
+
micro avg 0.7485 0.7543 0.7514 1176
|
241 |
+
macro avg 0.6937 0.6732 0.6796 1176
|
242 |
+
weighted avg 0.7502 0.7543 0.7508 1176
|
243 |
+
|
244 |
+
2023-10-13 12:47:54,502 ----------------------------------------------------------------------------------------------------
|