Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +244 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eebd18dc0d746ba85f6d36babd2ee198a4b5a1e11c662e6760f2c3b68d5dee46
|
3 |
+
size 443335879
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 13:05:04 0.0000 0.5152 0.1790 0.6490 0.5653 0.6043 0.4468
|
3 |
+
2 13:05:54 0.0000 0.1631 0.1371 0.7075 0.6677 0.6870 0.5408
|
4 |
+
3 13:06:46 0.0000 0.0973 0.1664 0.7937 0.7068 0.7477 0.6121
|
5 |
+
4 13:07:36 0.0000 0.0661 0.2019 0.7584 0.7561 0.7572 0.6239
|
6 |
+
5 13:08:28 0.0000 0.0421 0.2171 0.7029 0.7842 0.7413 0.6079
|
7 |
+
6 13:09:20 0.0000 0.0306 0.2127 0.7316 0.7780 0.7541 0.6238
|
8 |
+
7 13:10:11 0.0000 0.0199 0.2425 0.7679 0.7811 0.7744 0.6487
|
9 |
+
8 13:11:02 0.0000 0.0112 0.2334 0.8035 0.7639 0.7832 0.6570
|
10 |
+
9 13:11:54 0.0000 0.0061 0.2255 0.7649 0.7936 0.7790 0.6565
|
11 |
+
10 13:12:44 0.0000 0.0043 0.2382 0.7834 0.7834 0.7834 0.6618
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-13 13:04:16,455 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-13 13:04:16,455 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-13 13:04:16,456 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-13 13:04:16,456 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
53 |
+
2023-10-13 13:04:16,456 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-13 13:04:16,456 Train: 3575 sentences
|
55 |
+
2023-10-13 13:04:16,456 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-13 13:04:16,456 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-13 13:04:16,456 Training Params:
|
58 |
+
2023-10-13 13:04:16,456 - learning_rate: "5e-05"
|
59 |
+
2023-10-13 13:04:16,456 - mini_batch_size: "4"
|
60 |
+
2023-10-13 13:04:16,456 - max_epochs: "10"
|
61 |
+
2023-10-13 13:04:16,456 - shuffle: "True"
|
62 |
+
2023-10-13 13:04:16,456 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-13 13:04:16,456 Plugins:
|
64 |
+
2023-10-13 13:04:16,456 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-13 13:04:16,456 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-13 13:04:16,456 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-13 13:04:16,456 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-13 13:04:16,456 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-13 13:04:16,456 Computation:
|
70 |
+
2023-10-13 13:04:16,456 - compute on device: cuda:0
|
71 |
+
2023-10-13 13:04:16,456 - embedding storage: none
|
72 |
+
2023-10-13 13:04:16,456 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-13 13:04:16,456 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
|
74 |
+
2023-10-13 13:04:16,456 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-13 13:04:16,456 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-13 13:04:20,590 epoch 1 - iter 89/894 - loss 2.36634984 - time (sec): 4.13 - samples/sec: 2030.01 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-10-13 13:04:24,739 epoch 1 - iter 178/894 - loss 1.43239919 - time (sec): 8.28 - samples/sec: 2080.21 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-10-13 13:04:28,865 epoch 1 - iter 267/894 - loss 1.11148343 - time (sec): 12.41 - samples/sec: 2032.80 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-13 13:04:33,154 epoch 1 - iter 356/894 - loss 0.89126147 - time (sec): 16.70 - samples/sec: 2090.54 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-10-13 13:04:37,385 epoch 1 - iter 445/894 - loss 0.76537662 - time (sec): 20.93 - samples/sec: 2086.15 - lr: 0.000025 - momentum: 0.000000
|
81 |
+
2023-10-13 13:04:41,659 epoch 1 - iter 534/894 - loss 0.68100211 - time (sec): 25.20 - samples/sec: 2087.08 - lr: 0.000030 - momentum: 0.000000
|
82 |
+
2023-10-13 13:04:45,922 epoch 1 - iter 623/894 - loss 0.62588240 - time (sec): 29.46 - samples/sec: 2058.75 - lr: 0.000035 - momentum: 0.000000
|
83 |
+
2023-10-13 13:04:50,658 epoch 1 - iter 712/894 - loss 0.58637517 - time (sec): 34.20 - samples/sec: 2010.46 - lr: 0.000040 - momentum: 0.000000
|
84 |
+
2023-10-13 13:04:55,024 epoch 1 - iter 801/894 - loss 0.54465662 - time (sec): 38.57 - samples/sec: 2021.76 - lr: 0.000045 - momentum: 0.000000
|
85 |
+
2023-10-13 13:04:59,165 epoch 1 - iter 890/894 - loss 0.51580101 - time (sec): 42.71 - samples/sec: 2019.42 - lr: 0.000050 - momentum: 0.000000
|
86 |
+
2023-10-13 13:04:59,339 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-13 13:04:59,339 EPOCH 1 done: loss 0.5152 - lr: 0.000050
|
88 |
+
2023-10-13 13:05:04,379 DEV : loss 0.1789691001176834 - f1-score (micro avg) 0.6043
|
89 |
+
2023-10-13 13:05:04,404 saving best model
|
90 |
+
2023-10-13 13:05:04,708 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-13 13:05:08,595 epoch 2 - iter 89/894 - loss 0.19123209 - time (sec): 3.89 - samples/sec: 2118.22 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-10-13 13:05:12,714 epoch 2 - iter 178/894 - loss 0.18653465 - time (sec): 8.00 - samples/sec: 2105.89 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-10-13 13:05:16,707 epoch 2 - iter 267/894 - loss 0.17320392 - time (sec): 12.00 - samples/sec: 2092.69 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-10-13 13:05:20,941 epoch 2 - iter 356/894 - loss 0.16508210 - time (sec): 16.23 - samples/sec: 2076.00 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-10-13 13:05:25,000 epoch 2 - iter 445/894 - loss 0.17103083 - time (sec): 20.29 - samples/sec: 2066.33 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-10-13 13:05:29,170 epoch 2 - iter 534/894 - loss 0.16503055 - time (sec): 24.46 - samples/sec: 2052.01 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-10-13 13:05:33,290 epoch 2 - iter 623/894 - loss 0.16223494 - time (sec): 28.58 - samples/sec: 2070.65 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-10-13 13:05:37,456 epoch 2 - iter 712/894 - loss 0.16356294 - time (sec): 32.75 - samples/sec: 2074.67 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-10-13 13:05:41,548 epoch 2 - iter 801/894 - loss 0.16281990 - time (sec): 36.84 - samples/sec: 2104.60 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-10-13 13:05:45,629 epoch 2 - iter 890/894 - loss 0.16303453 - time (sec): 40.92 - samples/sec: 2107.04 - lr: 0.000044 - momentum: 0.000000
|
101 |
+
2023-10-13 13:05:45,808 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-13 13:05:45,808 EPOCH 2 done: loss 0.1631 - lr: 0.000044
|
103 |
+
2023-10-13 13:05:54,534 DEV : loss 0.137100949883461 - f1-score (micro avg) 0.687
|
104 |
+
2023-10-13 13:05:54,562 saving best model
|
105 |
+
2023-10-13 13:05:55,032 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-13 13:05:59,180 epoch 3 - iter 89/894 - loss 0.09699773 - time (sec): 4.15 - samples/sec: 1976.35 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-10-13 13:06:03,141 epoch 3 - iter 178/894 - loss 0.09307940 - time (sec): 8.11 - samples/sec: 1983.41 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-10-13 13:06:07,398 epoch 3 - iter 267/894 - loss 0.09537427 - time (sec): 12.36 - samples/sec: 2024.87 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-10-13 13:06:11,519 epoch 3 - iter 356/894 - loss 0.10190669 - time (sec): 16.49 - samples/sec: 2029.87 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-10-13 13:06:15,669 epoch 3 - iter 445/894 - loss 0.10548613 - time (sec): 20.64 - samples/sec: 2012.81 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-10-13 13:06:19,846 epoch 3 - iter 534/894 - loss 0.09892079 - time (sec): 24.81 - samples/sec: 2028.38 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-10-13 13:06:24,075 epoch 3 - iter 623/894 - loss 0.09652969 - time (sec): 29.04 - samples/sec: 2022.93 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-10-13 13:06:28,473 epoch 3 - iter 712/894 - loss 0.09893057 - time (sec): 33.44 - samples/sec: 2013.66 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-10-13 13:06:32,779 epoch 3 - iter 801/894 - loss 0.09689469 - time (sec): 37.74 - samples/sec: 2022.65 - lr: 0.000039 - momentum: 0.000000
|
115 |
+
2023-10-13 13:06:37,176 epoch 3 - iter 890/894 - loss 0.09758921 - time (sec): 42.14 - samples/sec: 2044.61 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-10-13 13:06:37,358 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-13 13:06:37,359 EPOCH 3 done: loss 0.0973 - lr: 0.000039
|
118 |
+
2023-10-13 13:06:46,038 DEV : loss 0.1663622260093689 - f1-score (micro avg) 0.7477
|
119 |
+
2023-10-13 13:06:46,074 saving best model
|
120 |
+
2023-10-13 13:06:46,554 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-13 13:06:50,999 epoch 4 - iter 89/894 - loss 0.06861891 - time (sec): 4.44 - samples/sec: 1871.87 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-10-13 13:06:55,159 epoch 4 - iter 178/894 - loss 0.06191697 - time (sec): 8.60 - samples/sec: 1944.64 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-10-13 13:06:59,111 epoch 4 - iter 267/894 - loss 0.05888640 - time (sec): 12.55 - samples/sec: 1998.40 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-10-13 13:07:03,348 epoch 4 - iter 356/894 - loss 0.06116699 - time (sec): 16.79 - samples/sec: 2100.08 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-10-13 13:07:07,307 epoch 4 - iter 445/894 - loss 0.05715439 - time (sec): 20.75 - samples/sec: 2097.09 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-10-13 13:07:11,513 epoch 4 - iter 534/894 - loss 0.06420373 - time (sec): 24.95 - samples/sec: 2090.38 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-10-13 13:07:15,549 epoch 4 - iter 623/894 - loss 0.06272790 - time (sec): 28.99 - samples/sec: 2100.24 - lr: 0.000035 - momentum: 0.000000
|
128 |
+
2023-10-13 13:07:19,635 epoch 4 - iter 712/894 - loss 0.06336972 - time (sec): 33.08 - samples/sec: 2091.46 - lr: 0.000034 - momentum: 0.000000
|
129 |
+
2023-10-13 13:07:23,854 epoch 4 - iter 801/894 - loss 0.06486021 - time (sec): 37.30 - samples/sec: 2100.20 - lr: 0.000034 - momentum: 0.000000
|
130 |
+
2023-10-13 13:07:27,851 epoch 4 - iter 890/894 - loss 0.06614027 - time (sec): 41.29 - samples/sec: 2088.79 - lr: 0.000033 - momentum: 0.000000
|
131 |
+
2023-10-13 13:07:28,035 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-13 13:07:28,035 EPOCH 4 done: loss 0.0661 - lr: 0.000033
|
133 |
+
2023-10-13 13:07:36,744 DEV : loss 0.20190493762493134 - f1-score (micro avg) 0.7572
|
134 |
+
2023-10-13 13:07:36,774 saving best model
|
135 |
+
2023-10-13 13:07:37,188 ----------------------------------------------------------------------------------------------------
|
136 |
+
2023-10-13 13:07:41,561 epoch 5 - iter 89/894 - loss 0.04288380 - time (sec): 4.37 - samples/sec: 1956.39 - lr: 0.000033 - momentum: 0.000000
|
137 |
+
2023-10-13 13:07:45,694 epoch 5 - iter 178/894 - loss 0.03764053 - time (sec): 8.50 - samples/sec: 1968.92 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-10-13 13:07:49,851 epoch 5 - iter 267/894 - loss 0.03485234 - time (sec): 12.66 - samples/sec: 1998.91 - lr: 0.000032 - momentum: 0.000000
|
139 |
+
2023-10-13 13:07:53,898 epoch 5 - iter 356/894 - loss 0.03891244 - time (sec): 16.71 - samples/sec: 1992.95 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-10-13 13:07:58,344 epoch 5 - iter 445/894 - loss 0.04283138 - time (sec): 21.15 - samples/sec: 2013.45 - lr: 0.000031 - momentum: 0.000000
|
141 |
+
2023-10-13 13:08:02,706 epoch 5 - iter 534/894 - loss 0.04395209 - time (sec): 25.51 - samples/sec: 1992.27 - lr: 0.000030 - momentum: 0.000000
|
142 |
+
2023-10-13 13:08:07,000 epoch 5 - iter 623/894 - loss 0.04187519 - time (sec): 29.81 - samples/sec: 1974.53 - lr: 0.000029 - momentum: 0.000000
|
143 |
+
2023-10-13 13:08:11,451 epoch 5 - iter 712/894 - loss 0.04371575 - time (sec): 34.26 - samples/sec: 2013.92 - lr: 0.000029 - momentum: 0.000000
|
144 |
+
2023-10-13 13:08:15,665 epoch 5 - iter 801/894 - loss 0.04232226 - time (sec): 38.47 - samples/sec: 2029.58 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-10-13 13:08:19,803 epoch 5 - iter 890/894 - loss 0.04227247 - time (sec): 42.61 - samples/sec: 2024.39 - lr: 0.000028 - momentum: 0.000000
|
146 |
+
2023-10-13 13:08:19,982 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-10-13 13:08:19,982 EPOCH 5 done: loss 0.0421 - lr: 0.000028
|
148 |
+
2023-10-13 13:08:28,483 DEV : loss 0.2170535773038864 - f1-score (micro avg) 0.7413
|
149 |
+
2023-10-13 13:08:28,510 ----------------------------------------------------------------------------------------------------
|
150 |
+
2023-10-13 13:08:33,040 epoch 6 - iter 89/894 - loss 0.03105688 - time (sec): 4.53 - samples/sec: 2143.95 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-10-13 13:08:37,152 epoch 6 - iter 178/894 - loss 0.02598800 - time (sec): 8.64 - samples/sec: 2086.86 - lr: 0.000027 - momentum: 0.000000
|
152 |
+
2023-10-13 13:08:41,573 epoch 6 - iter 267/894 - loss 0.02511682 - time (sec): 13.06 - samples/sec: 2059.81 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-10-13 13:08:45,626 epoch 6 - iter 356/894 - loss 0.02507832 - time (sec): 17.11 - samples/sec: 2094.96 - lr: 0.000026 - momentum: 0.000000
|
154 |
+
2023-10-13 13:08:49,625 epoch 6 - iter 445/894 - loss 0.02412952 - time (sec): 21.11 - samples/sec: 2120.88 - lr: 0.000025 - momentum: 0.000000
|
155 |
+
2023-10-13 13:08:54,136 epoch 6 - iter 534/894 - loss 0.02552282 - time (sec): 25.63 - samples/sec: 2060.82 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-10-13 13:08:58,762 epoch 6 - iter 623/894 - loss 0.02567017 - time (sec): 30.25 - samples/sec: 2008.90 - lr: 0.000024 - momentum: 0.000000
|
157 |
+
2023-10-13 13:09:03,242 epoch 6 - iter 712/894 - loss 0.02907428 - time (sec): 34.73 - samples/sec: 1982.97 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-10-13 13:09:07,685 epoch 6 - iter 801/894 - loss 0.03070030 - time (sec): 39.17 - samples/sec: 1983.15 - lr: 0.000023 - momentum: 0.000000
|
159 |
+
2023-10-13 13:09:12,113 epoch 6 - iter 890/894 - loss 0.03031654 - time (sec): 43.60 - samples/sec: 1979.02 - lr: 0.000022 - momentum: 0.000000
|
160 |
+
2023-10-13 13:09:12,288 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-10-13 13:09:12,289 EPOCH 6 done: loss 0.0306 - lr: 0.000022
|
162 |
+
2023-10-13 13:09:20,941 DEV : loss 0.21267157793045044 - f1-score (micro avg) 0.7541
|
163 |
+
2023-10-13 13:09:20,968 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-13 13:09:25,137 epoch 7 - iter 89/894 - loss 0.02116415 - time (sec): 4.17 - samples/sec: 2238.75 - lr: 0.000022 - momentum: 0.000000
|
165 |
+
2023-10-13 13:09:29,616 epoch 7 - iter 178/894 - loss 0.02415449 - time (sec): 8.65 - samples/sec: 2209.79 - lr: 0.000021 - momentum: 0.000000
|
166 |
+
2023-10-13 13:09:34,148 epoch 7 - iter 267/894 - loss 0.02137786 - time (sec): 13.18 - samples/sec: 2121.64 - lr: 0.000021 - momentum: 0.000000
|
167 |
+
2023-10-13 13:09:38,226 epoch 7 - iter 356/894 - loss 0.02169246 - time (sec): 17.26 - samples/sec: 2162.02 - lr: 0.000020 - momentum: 0.000000
|
168 |
+
2023-10-13 13:09:42,374 epoch 7 - iter 445/894 - loss 0.01995436 - time (sec): 21.40 - samples/sec: 2150.81 - lr: 0.000019 - momentum: 0.000000
|
169 |
+
2023-10-13 13:09:46,490 epoch 7 - iter 534/894 - loss 0.01839450 - time (sec): 25.52 - samples/sec: 2114.02 - lr: 0.000019 - momentum: 0.000000
|
170 |
+
2023-10-13 13:09:50,578 epoch 7 - iter 623/894 - loss 0.01849719 - time (sec): 29.61 - samples/sec: 2079.51 - lr: 0.000018 - momentum: 0.000000
|
171 |
+
2023-10-13 13:09:54,790 epoch 7 - iter 712/894 - loss 0.01855825 - time (sec): 33.82 - samples/sec: 2069.57 - lr: 0.000018 - momentum: 0.000000
|
172 |
+
2023-10-13 13:09:58,936 epoch 7 - iter 801/894 - loss 0.01877532 - time (sec): 37.97 - samples/sec: 2055.33 - lr: 0.000017 - momentum: 0.000000
|
173 |
+
2023-10-13 13:10:02,992 epoch 7 - iter 890/894 - loss 0.02001437 - time (sec): 42.02 - samples/sec: 2049.29 - lr: 0.000017 - momentum: 0.000000
|
174 |
+
2023-10-13 13:10:03,172 ----------------------------------------------------------------------------------------------------
|
175 |
+
2023-10-13 13:10:03,172 EPOCH 7 done: loss 0.0199 - lr: 0.000017
|
176 |
+
2023-10-13 13:10:11,819 DEV : loss 0.24245555698871613 - f1-score (micro avg) 0.7744
|
177 |
+
2023-10-13 13:10:11,846 saving best model
|
178 |
+
2023-10-13 13:10:12,251 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-13 13:10:16,359 epoch 8 - iter 89/894 - loss 0.01603205 - time (sec): 4.10 - samples/sec: 2129.71 - lr: 0.000016 - momentum: 0.000000
|
180 |
+
2023-10-13 13:10:20,346 epoch 8 - iter 178/894 - loss 0.01420650 - time (sec): 8.09 - samples/sec: 2090.79 - lr: 0.000016 - momentum: 0.000000
|
181 |
+
2023-10-13 13:10:24,729 epoch 8 - iter 267/894 - loss 0.01506146 - time (sec): 12.47 - samples/sec: 2168.47 - lr: 0.000015 - momentum: 0.000000
|
182 |
+
2023-10-13 13:10:28,889 epoch 8 - iter 356/894 - loss 0.01227759 - time (sec): 16.63 - samples/sec: 2134.89 - lr: 0.000014 - momentum: 0.000000
|
183 |
+
2023-10-13 13:10:33,378 epoch 8 - iter 445/894 - loss 0.01221774 - time (sec): 21.12 - samples/sec: 2085.76 - lr: 0.000014 - momentum: 0.000000
|
184 |
+
2023-10-13 13:10:37,636 epoch 8 - iter 534/894 - loss 0.01151621 - time (sec): 25.38 - samples/sec: 2087.00 - lr: 0.000013 - momentum: 0.000000
|
185 |
+
2023-10-13 13:10:41,814 epoch 8 - iter 623/894 - loss 0.01137032 - time (sec): 29.56 - samples/sec: 2077.04 - lr: 0.000013 - momentum: 0.000000
|
186 |
+
2023-10-13 13:10:45,868 epoch 8 - iter 712/894 - loss 0.01073686 - time (sec): 33.61 - samples/sec: 2072.07 - lr: 0.000012 - momentum: 0.000000
|
187 |
+
2023-10-13 13:10:50,055 epoch 8 - iter 801/894 - loss 0.01085969 - time (sec): 37.80 - samples/sec: 2076.10 - lr: 0.000012 - momentum: 0.000000
|
188 |
+
2023-10-13 13:10:54,024 epoch 8 - iter 890/894 - loss 0.01108987 - time (sec): 41.77 - samples/sec: 2065.03 - lr: 0.000011 - momentum: 0.000000
|
189 |
+
2023-10-13 13:10:54,198 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-10-13 13:10:54,198 EPOCH 8 done: loss 0.0112 - lr: 0.000011
|
191 |
+
2023-10-13 13:11:02,846 DEV : loss 0.233389750123024 - f1-score (micro avg) 0.7832
|
192 |
+
2023-10-13 13:11:02,873 saving best model
|
193 |
+
2023-10-13 13:11:03,298 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-13 13:11:07,662 epoch 9 - iter 89/894 - loss 0.00502968 - time (sec): 4.36 - samples/sec: 1888.24 - lr: 0.000011 - momentum: 0.000000
|
195 |
+
2023-10-13 13:11:12,220 epoch 9 - iter 178/894 - loss 0.00345860 - time (sec): 8.92 - samples/sec: 1986.19 - lr: 0.000010 - momentum: 0.000000
|
196 |
+
2023-10-13 13:11:16,359 epoch 9 - iter 267/894 - loss 0.00469124 - time (sec): 13.06 - samples/sec: 2013.22 - lr: 0.000009 - momentum: 0.000000
|
197 |
+
2023-10-13 13:11:20,410 epoch 9 - iter 356/894 - loss 0.00482172 - time (sec): 17.11 - samples/sec: 2031.12 - lr: 0.000009 - momentum: 0.000000
|
198 |
+
2023-10-13 13:11:24,331 epoch 9 - iter 445/894 - loss 0.00561556 - time (sec): 21.03 - samples/sec: 2057.73 - lr: 0.000008 - momentum: 0.000000
|
199 |
+
2023-10-13 13:11:28,315 epoch 9 - iter 534/894 - loss 0.00515886 - time (sec): 25.01 - samples/sec: 2060.32 - lr: 0.000008 - momentum: 0.000000
|
200 |
+
2023-10-13 13:11:32,522 epoch 9 - iter 623/894 - loss 0.00534634 - time (sec): 29.22 - samples/sec: 2040.68 - lr: 0.000007 - momentum: 0.000000
|
201 |
+
2023-10-13 13:11:36,786 epoch 9 - iter 712/894 - loss 0.00559174 - time (sec): 33.49 - samples/sec: 2039.71 - lr: 0.000007 - momentum: 0.000000
|
202 |
+
2023-10-13 13:11:41,058 epoch 9 - iter 801/894 - loss 0.00552963 - time (sec): 37.76 - samples/sec: 2064.38 - lr: 0.000006 - momentum: 0.000000
|
203 |
+
2023-10-13 13:11:45,102 epoch 9 - iter 890/894 - loss 0.00582293 - time (sec): 41.80 - samples/sec: 2061.36 - lr: 0.000006 - momentum: 0.000000
|
204 |
+
2023-10-13 13:11:45,305 ----------------------------------------------------------------------------------------------------
|
205 |
+
2023-10-13 13:11:45,306 EPOCH 9 done: loss 0.0061 - lr: 0.000006
|
206 |
+
2023-10-13 13:11:54,109 DEV : loss 0.2255241870880127 - f1-score (micro avg) 0.779
|
207 |
+
2023-10-13 13:11:54,139 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-13 13:11:58,538 epoch 10 - iter 89/894 - loss 0.00368147 - time (sec): 4.40 - samples/sec: 2080.65 - lr: 0.000005 - momentum: 0.000000
|
209 |
+
2023-10-13 13:12:02,657 epoch 10 - iter 178/894 - loss 0.00436238 - time (sec): 8.52 - samples/sec: 2048.21 - lr: 0.000004 - momentum: 0.000000
|
210 |
+
2023-10-13 13:12:06,746 epoch 10 - iter 267/894 - loss 0.00379776 - time (sec): 12.61 - samples/sec: 2081.50 - lr: 0.000004 - momentum: 0.000000
|
211 |
+
2023-10-13 13:12:10,863 epoch 10 - iter 356/894 - loss 0.00400577 - time (sec): 16.72 - samples/sec: 2090.41 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-13 13:12:15,238 epoch 10 - iter 445/894 - loss 0.00371452 - time (sec): 21.10 - samples/sec: 2040.31 - lr: 0.000003 - momentum: 0.000000
|
213 |
+
2023-10-13 13:12:19,338 epoch 10 - iter 534/894 - loss 0.00453871 - time (sec): 25.20 - samples/sec: 2035.60 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-13 13:12:23,456 epoch 10 - iter 623/894 - loss 0.00446673 - time (sec): 29.32 - samples/sec: 2057.39 - lr: 0.000002 - momentum: 0.000000
|
215 |
+
2023-10-13 13:12:27,853 epoch 10 - iter 712/894 - loss 0.00466561 - time (sec): 33.71 - samples/sec: 2088.01 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-13 13:12:31,952 epoch 10 - iter 801/894 - loss 0.00442535 - time (sec): 37.81 - samples/sec: 2069.29 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-10-13 13:12:36,079 epoch 10 - iter 890/894 - loss 0.00430193 - time (sec): 41.94 - samples/sec: 2054.07 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-10-13 13:12:36,255 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-10-13 13:12:36,256 EPOCH 10 done: loss 0.0043 - lr: 0.000000
|
220 |
+
2023-10-13 13:12:44,962 DEV : loss 0.23823896050453186 - f1-score (micro avg) 0.7834
|
221 |
+
2023-10-13 13:12:44,989 saving best model
|
222 |
+
2023-10-13 13:12:45,734 ----------------------------------------------------------------------------------------------------
|
223 |
+
2023-10-13 13:12:45,736 Loading model from best epoch ...
|
224 |
+
2023-10-13 13:12:47,180 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
225 |
+
2023-10-13 13:12:51,907
|
226 |
+
Results:
|
227 |
+
- F-score (micro) 0.7438
|
228 |
+
- F-score (macro) 0.6448
|
229 |
+
- Accuracy 0.6112
|
230 |
+
|
231 |
+
By class:
|
232 |
+
precision recall f1-score support
|
233 |
+
|
234 |
+
loc 0.8333 0.8473 0.8403 596
|
235 |
+
pers 0.6614 0.7568 0.7059 333
|
236 |
+
org 0.6118 0.3939 0.4793 132
|
237 |
+
prod 0.6222 0.4242 0.5045 66
|
238 |
+
time 0.6939 0.6939 0.6939 49
|
239 |
+
|
240 |
+
micro avg 0.7470 0.7406 0.7438 1176
|
241 |
+
macro avg 0.6845 0.6232 0.6448 1176
|
242 |
+
weighted avg 0.7421 0.7406 0.7367 1176
|
243 |
+
|
244 |
+
2023-10-13 13:12:51,908 ----------------------------------------------------------------------------------------------------
|