Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +246 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6670141c7c21f7224fa938b927c4d484514c1691f3cbb1392e14960e35845485
|
3 |
+
size 443335879
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 12:33:11 0.0000 0.5533 0.1821 0.6872 0.5754 0.6264 0.4655
|
3 |
+
2 12:34:02 0.0000 0.1651 0.1484 0.6739 0.7076 0.6903 0.5455
|
4 |
+
3 12:34:54 0.0000 0.0970 0.2167 0.7806 0.7037 0.7401 0.5992
|
5 |
+
4 12:35:44 0.0000 0.0639 0.1947 0.7330 0.7428 0.7379 0.6028
|
6 |
+
5 12:36:35 0.0000 0.0406 0.2318 0.7648 0.7576 0.7612 0.6304
|
7 |
+
6 12:37:27 0.0000 0.0343 0.2459 0.7658 0.7670 0.7664 0.6395
|
8 |
+
7 12:38:19 0.0000 0.0206 0.2359 0.7541 0.7819 0.7678 0.6402
|
9 |
+
8 12:39:10 0.0000 0.0133 0.2714 0.7726 0.7678 0.7702 0.6456
|
10 |
+
9 12:40:03 0.0000 0.0098 0.2518 0.7923 0.7756 0.7839 0.6609
|
11 |
+
10 12:40:56 0.0000 0.0048 0.2590 0.7894 0.7826 0.7860 0.6629
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-13 12:32:19,278 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-13 12:32:19,279 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-13 12:32:19,279 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-13 12:32:19,279 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
53 |
+
2023-10-13 12:32:19,279 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-13 12:32:19,279 Train: 3575 sentences
|
55 |
+
2023-10-13 12:32:19,279 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-13 12:32:19,279 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-13 12:32:19,279 Training Params:
|
58 |
+
2023-10-13 12:32:19,279 - learning_rate: "5e-05"
|
59 |
+
2023-10-13 12:32:19,279 - mini_batch_size: "4"
|
60 |
+
2023-10-13 12:32:19,279 - max_epochs: "10"
|
61 |
+
2023-10-13 12:32:19,279 - shuffle: "True"
|
62 |
+
2023-10-13 12:32:19,279 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-13 12:32:19,279 Plugins:
|
64 |
+
2023-10-13 12:32:19,280 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-13 12:32:19,280 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-13 12:32:19,280 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-13 12:32:19,280 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-13 12:32:19,280 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-13 12:32:19,280 Computation:
|
70 |
+
2023-10-13 12:32:19,280 - compute on device: cuda:0
|
71 |
+
2023-10-13 12:32:19,280 - embedding storage: none
|
72 |
+
2023-10-13 12:32:19,280 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-13 12:32:19,280 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
|
74 |
+
2023-10-13 12:32:19,280 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-13 12:32:19,280 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-13 12:32:23,751 epoch 1 - iter 89/894 - loss 2.85983461 - time (sec): 4.47 - samples/sec: 1792.74 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-10-13 12:32:28,441 epoch 1 - iter 178/894 - loss 1.72346897 - time (sec): 9.16 - samples/sec: 1753.15 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-10-13 12:32:33,078 epoch 1 - iter 267/894 - loss 1.24732200 - time (sec): 13.80 - samples/sec: 1807.21 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-13 12:32:37,557 epoch 1 - iter 356/894 - loss 1.03004553 - time (sec): 18.28 - samples/sec: 1807.56 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-10-13 12:32:42,240 epoch 1 - iter 445/894 - loss 0.87776144 - time (sec): 22.96 - samples/sec: 1824.47 - lr: 0.000025 - momentum: 0.000000
|
81 |
+
2023-10-13 12:32:47,145 epoch 1 - iter 534/894 - loss 0.76230451 - time (sec): 27.86 - samples/sec: 1873.14 - lr: 0.000030 - momentum: 0.000000
|
82 |
+
2023-10-13 12:32:52,025 epoch 1 - iter 623/894 - loss 0.69436195 - time (sec): 32.74 - samples/sec: 1846.87 - lr: 0.000035 - momentum: 0.000000
|
83 |
+
2023-10-13 12:32:56,787 epoch 1 - iter 712/894 - loss 0.63775811 - time (sec): 37.51 - samples/sec: 1846.05 - lr: 0.000040 - momentum: 0.000000
|
84 |
+
2023-10-13 12:33:01,489 epoch 1 - iter 801/894 - loss 0.59768895 - time (sec): 42.21 - samples/sec: 1829.53 - lr: 0.000045 - momentum: 0.000000
|
85 |
+
2023-10-13 12:33:06,315 epoch 1 - iter 890/894 - loss 0.55580460 - time (sec): 47.03 - samples/sec: 1829.34 - lr: 0.000050 - momentum: 0.000000
|
86 |
+
2023-10-13 12:33:06,492 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-13 12:33:06,493 EPOCH 1 done: loss 0.5533 - lr: 0.000050
|
88 |
+
2023-10-13 12:33:11,352 DEV : loss 0.18206389248371124 - f1-score (micro avg) 0.6264
|
89 |
+
2023-10-13 12:33:11,379 saving best model
|
90 |
+
2023-10-13 12:33:11,748 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-13 12:33:15,811 epoch 2 - iter 89/894 - loss 0.20901231 - time (sec): 4.06 - samples/sec: 2117.99 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-10-13 12:33:19,898 epoch 2 - iter 178/894 - loss 0.19760510 - time (sec): 8.15 - samples/sec: 2090.27 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-10-13 12:33:23,982 epoch 2 - iter 267/894 - loss 0.19189895 - time (sec): 12.23 - samples/sec: 2062.14 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-10-13 12:33:28,119 epoch 2 - iter 356/894 - loss 0.18761752 - time (sec): 16.37 - samples/sec: 2080.74 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-10-13 12:33:32,271 epoch 2 - iter 445/894 - loss 0.18116435 - time (sec): 20.52 - samples/sec: 2055.03 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-10-13 12:33:36,461 epoch 2 - iter 534/894 - loss 0.17830011 - time (sec): 24.71 - samples/sec: 2083.01 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-10-13 12:33:40,787 epoch 2 - iter 623/894 - loss 0.17220591 - time (sec): 29.04 - samples/sec: 2059.70 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-10-13 12:33:45,142 epoch 2 - iter 712/894 - loss 0.16726249 - time (sec): 33.39 - samples/sec: 2070.36 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-10-13 12:33:49,272 epoch 2 - iter 801/894 - loss 0.16456063 - time (sec): 37.52 - samples/sec: 2075.68 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-10-13 12:33:53,170 epoch 2 - iter 890/894 - loss 0.16515628 - time (sec): 41.42 - samples/sec: 2079.86 - lr: 0.000044 - momentum: 0.000000
|
101 |
+
2023-10-13 12:33:53,343 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-13 12:33:53,343 EPOCH 2 done: loss 0.1651 - lr: 0.000044
|
103 |
+
2023-10-13 12:34:02,186 DEV : loss 0.14844626188278198 - f1-score (micro avg) 0.6903
|
104 |
+
2023-10-13 12:34:02,216 saving best model
|
105 |
+
2023-10-13 12:34:02,669 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-13 12:34:07,048 epoch 3 - iter 89/894 - loss 0.08584339 - time (sec): 4.38 - samples/sec: 1971.04 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-10-13 12:34:11,408 epoch 3 - iter 178/894 - loss 0.08458851 - time (sec): 8.74 - samples/sec: 2090.91 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-10-13 12:34:15,589 epoch 3 - iter 267/894 - loss 0.08982643 - time (sec): 12.92 - samples/sec: 2129.73 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-10-13 12:34:19,889 epoch 3 - iter 356/894 - loss 0.08300527 - time (sec): 17.22 - samples/sec: 2118.70 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-10-13 12:34:24,349 epoch 3 - iter 445/894 - loss 0.09461899 - time (sec): 21.68 - samples/sec: 2097.72 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-10-13 12:34:28,556 epoch 3 - iter 534/894 - loss 0.09779057 - time (sec): 25.89 - samples/sec: 2053.48 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-10-13 12:34:32,893 epoch 3 - iter 623/894 - loss 0.09502757 - time (sec): 30.22 - samples/sec: 2036.10 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-10-13 12:34:37,045 epoch 3 - iter 712/894 - loss 0.09421525 - time (sec): 34.37 - samples/sec: 2022.03 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-10-13 12:34:41,215 epoch 3 - iter 801/894 - loss 0.09728203 - time (sec): 38.54 - samples/sec: 2020.67 - lr: 0.000039 - momentum: 0.000000
|
115 |
+
2023-10-13 12:34:45,220 epoch 3 - iter 890/894 - loss 0.09737888 - time (sec): 42.55 - samples/sec: 2024.31 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-10-13 12:34:45,395 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-13 12:34:45,395 EPOCH 3 done: loss 0.0970 - lr: 0.000039
|
118 |
+
2023-10-13 12:34:54,092 DEV : loss 0.21671560406684875 - f1-score (micro avg) 0.7401
|
119 |
+
2023-10-13 12:34:54,121 saving best model
|
120 |
+
2023-10-13 12:34:54,564 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-13 12:34:58,507 epoch 4 - iter 89/894 - loss 0.06239486 - time (sec): 3.94 - samples/sec: 1934.14 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-10-13 12:35:02,740 epoch 4 - iter 178/894 - loss 0.05659001 - time (sec): 8.17 - samples/sec: 2076.86 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-10-13 12:35:06,896 epoch 4 - iter 267/894 - loss 0.07314064 - time (sec): 12.33 - samples/sec: 2052.34 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-10-13 12:35:11,114 epoch 4 - iter 356/894 - loss 0.06967169 - time (sec): 16.55 - samples/sec: 2051.60 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-10-13 12:35:15,115 epoch 4 - iter 445/894 - loss 0.06814429 - time (sec): 20.55 - samples/sec: 2023.19 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-10-13 12:35:19,600 epoch 4 - iter 534/894 - loss 0.06312653 - time (sec): 25.04 - samples/sec: 2074.53 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-10-13 12:35:23,863 epoch 4 - iter 623/894 - loss 0.06341301 - time (sec): 29.30 - samples/sec: 2064.67 - lr: 0.000035 - momentum: 0.000000
|
128 |
+
2023-10-13 12:35:27,776 epoch 4 - iter 712/894 - loss 0.06424281 - time (sec): 33.21 - samples/sec: 2065.66 - lr: 0.000034 - momentum: 0.000000
|
129 |
+
2023-10-13 12:35:31,743 epoch 4 - iter 801/894 - loss 0.06543736 - time (sec): 37.18 - samples/sec: 2092.22 - lr: 0.000034 - momentum: 0.000000
|
130 |
+
2023-10-13 12:35:35,761 epoch 4 - iter 890/894 - loss 0.06405722 - time (sec): 41.20 - samples/sec: 2093.77 - lr: 0.000033 - momentum: 0.000000
|
131 |
+
2023-10-13 12:35:35,945 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-13 12:35:35,945 EPOCH 4 done: loss 0.0639 - lr: 0.000033
|
133 |
+
2023-10-13 12:35:44,595 DEV : loss 0.1947321891784668 - f1-score (micro avg) 0.7379
|
134 |
+
2023-10-13 12:35:44,623 ----------------------------------------------------------------------------------------------------
|
135 |
+
2023-10-13 12:35:48,550 epoch 5 - iter 89/894 - loss 0.05096803 - time (sec): 3.93 - samples/sec: 2072.36 - lr: 0.000033 - momentum: 0.000000
|
136 |
+
2023-10-13 12:35:52,426 epoch 5 - iter 178/894 - loss 0.04532651 - time (sec): 7.80 - samples/sec: 2056.55 - lr: 0.000032 - momentum: 0.000000
|
137 |
+
2023-10-13 12:35:56,464 epoch 5 - iter 267/894 - loss 0.04436703 - time (sec): 11.84 - samples/sec: 2090.11 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-10-13 12:36:00,970 epoch 5 - iter 356/894 - loss 0.04213125 - time (sec): 16.35 - samples/sec: 2086.23 - lr: 0.000031 - momentum: 0.000000
|
139 |
+
2023-10-13 12:36:05,425 epoch 5 - iter 445/894 - loss 0.04195800 - time (sec): 20.80 - samples/sec: 2067.23 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-10-13 12:36:09,548 epoch 5 - iter 534/894 - loss 0.04254711 - time (sec): 24.92 - samples/sec: 2062.82 - lr: 0.000030 - momentum: 0.000000
|
141 |
+
2023-10-13 12:36:13,943 epoch 5 - iter 623/894 - loss 0.04283399 - time (sec): 29.32 - samples/sec: 2062.46 - lr: 0.000029 - momentum: 0.000000
|
142 |
+
2023-10-13 12:36:18,296 epoch 5 - iter 712/894 - loss 0.04335760 - time (sec): 33.67 - samples/sec: 2073.39 - lr: 0.000029 - momentum: 0.000000
|
143 |
+
2023-10-13 12:36:22,427 epoch 5 - iter 801/894 - loss 0.04107727 - time (sec): 37.80 - samples/sec: 2074.95 - lr: 0.000028 - momentum: 0.000000
|
144 |
+
2023-10-13 12:36:26,403 epoch 5 - iter 890/894 - loss 0.04070854 - time (sec): 41.78 - samples/sec: 2063.32 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-10-13 12:36:26,582 ----------------------------------------------------------------------------------------------------
|
146 |
+
2023-10-13 12:36:26,582 EPOCH 5 done: loss 0.0406 - lr: 0.000028
|
147 |
+
2023-10-13 12:36:35,756 DEV : loss 0.2318100780248642 - f1-score (micro avg) 0.7612
|
148 |
+
2023-10-13 12:36:35,787 saving best model
|
149 |
+
2023-10-13 12:36:36,173 ----------------------------------------------------------------------------------------------------
|
150 |
+
2023-10-13 12:36:40,528 epoch 6 - iter 89/894 - loss 0.02285241 - time (sec): 4.35 - samples/sec: 1993.67 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-10-13 12:36:44,740 epoch 6 - iter 178/894 - loss 0.02994531 - time (sec): 8.57 - samples/sec: 1977.19 - lr: 0.000027 - momentum: 0.000000
|
152 |
+
2023-10-13 12:36:48,963 epoch 6 - iter 267/894 - loss 0.03140204 - time (sec): 12.79 - samples/sec: 1961.50 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-10-13 12:36:53,037 epoch 6 - iter 356/894 - loss 0.03042671 - time (sec): 16.86 - samples/sec: 2000.69 - lr: 0.000026 - momentum: 0.000000
|
154 |
+
2023-10-13 12:36:57,485 epoch 6 - iter 445/894 - loss 0.03182242 - time (sec): 21.31 - samples/sec: 1970.17 - lr: 0.000025 - momentum: 0.000000
|
155 |
+
2023-10-13 12:37:01,561 epoch 6 - iter 534/894 - loss 0.03205269 - time (sec): 25.39 - samples/sec: 1986.79 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-10-13 12:37:05,724 epoch 6 - iter 623/894 - loss 0.03194324 - time (sec): 29.55 - samples/sec: 1982.14 - lr: 0.000024 - momentum: 0.000000
|
157 |
+
2023-10-13 12:37:10,061 epoch 6 - iter 712/894 - loss 0.03214632 - time (sec): 33.89 - samples/sec: 1976.66 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-10-13 12:37:14,206 epoch 6 - iter 801/894 - loss 0.03639544 - time (sec): 38.03 - samples/sec: 1997.06 - lr: 0.000023 - momentum: 0.000000
|
159 |
+
2023-10-13 12:37:18,693 epoch 6 - iter 890/894 - loss 0.03436798 - time (sec): 42.52 - samples/sec: 2022.52 - lr: 0.000022 - momentum: 0.000000
|
160 |
+
2023-10-13 12:37:18,891 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-10-13 12:37:18,891 EPOCH 6 done: loss 0.0343 - lr: 0.000022
|
162 |
+
2023-10-13 12:37:27,725 DEV : loss 0.2459443360567093 - f1-score (micro avg) 0.7664
|
163 |
+
2023-10-13 12:37:27,753 saving best model
|
164 |
+
2023-10-13 12:37:28,192 ----------------------------------------------------------------------------------------------------
|
165 |
+
2023-10-13 12:37:32,358 epoch 7 - iter 89/894 - loss 0.02901541 - time (sec): 4.16 - samples/sec: 2086.25 - lr: 0.000022 - momentum: 0.000000
|
166 |
+
2023-10-13 12:37:37,075 epoch 7 - iter 178/894 - loss 0.02057225 - time (sec): 8.88 - samples/sec: 1942.97 - lr: 0.000021 - momentum: 0.000000
|
167 |
+
2023-10-13 12:37:41,718 epoch 7 - iter 267/894 - loss 0.02355731 - time (sec): 13.52 - samples/sec: 1944.79 - lr: 0.000021 - momentum: 0.000000
|
168 |
+
2023-10-13 12:37:45,887 epoch 7 - iter 356/894 - loss 0.02226925 - time (sec): 17.69 - samples/sec: 1983.66 - lr: 0.000020 - momentum: 0.000000
|
169 |
+
2023-10-13 12:37:49,779 epoch 7 - iter 445/894 - loss 0.02176302 - time (sec): 21.58 - samples/sec: 2001.58 - lr: 0.000019 - momentum: 0.000000
|
170 |
+
2023-10-13 12:37:54,061 epoch 7 - iter 534/894 - loss 0.02088338 - time (sec): 25.87 - samples/sec: 2002.74 - lr: 0.000019 - momentum: 0.000000
|
171 |
+
2023-10-13 12:37:58,011 epoch 7 - iter 623/894 - loss 0.02136378 - time (sec): 29.82 - samples/sec: 2014.53 - lr: 0.000018 - momentum: 0.000000
|
172 |
+
2023-10-13 12:38:01,910 epoch 7 - iter 712/894 - loss 0.02093973 - time (sec): 33.72 - samples/sec: 2030.45 - lr: 0.000018 - momentum: 0.000000
|
173 |
+
2023-10-13 12:38:05,780 epoch 7 - iter 801/894 - loss 0.02131084 - time (sec): 37.59 - samples/sec: 2027.97 - lr: 0.000017 - momentum: 0.000000
|
174 |
+
2023-10-13 12:38:10,100 epoch 7 - iter 890/894 - loss 0.02072021 - time (sec): 41.91 - samples/sec: 2053.61 - lr: 0.000017 - momentum: 0.000000
|
175 |
+
2023-10-13 12:38:10,297 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-10-13 12:38:10,297 EPOCH 7 done: loss 0.0206 - lr: 0.000017
|
177 |
+
2023-10-13 12:38:19,433 DEV : loss 0.23593628406524658 - f1-score (micro avg) 0.7678
|
178 |
+
2023-10-13 12:38:19,472 saving best model
|
179 |
+
2023-10-13 12:38:20,009 ----------------------------------------------------------------------------------------------------
|
180 |
+
2023-10-13 12:38:24,729 epoch 8 - iter 89/894 - loss 0.01361398 - time (sec): 4.72 - samples/sec: 1779.60 - lr: 0.000016 - momentum: 0.000000
|
181 |
+
2023-10-13 12:38:29,248 epoch 8 - iter 178/894 - loss 0.01742511 - time (sec): 9.24 - samples/sec: 1957.94 - lr: 0.000016 - momentum: 0.000000
|
182 |
+
2023-10-13 12:38:33,322 epoch 8 - iter 267/894 - loss 0.01587200 - time (sec): 13.31 - samples/sec: 1983.09 - lr: 0.000015 - momentum: 0.000000
|
183 |
+
2023-10-13 12:38:37,457 epoch 8 - iter 356/894 - loss 0.01499465 - time (sec): 17.45 - samples/sec: 2007.73 - lr: 0.000014 - momentum: 0.000000
|
184 |
+
2023-10-13 12:38:41,570 epoch 8 - iter 445/894 - loss 0.01522297 - time (sec): 21.56 - samples/sec: 1985.39 - lr: 0.000014 - momentum: 0.000000
|
185 |
+
2023-10-13 12:38:45,637 epoch 8 - iter 534/894 - loss 0.01336557 - time (sec): 25.63 - samples/sec: 2019.99 - lr: 0.000013 - momentum: 0.000000
|
186 |
+
2023-10-13 12:38:49,596 epoch 8 - iter 623/894 - loss 0.01367776 - time (sec): 29.58 - samples/sec: 2048.84 - lr: 0.000013 - momentum: 0.000000
|
187 |
+
2023-10-13 12:38:53,562 epoch 8 - iter 712/894 - loss 0.01386286 - time (sec): 33.55 - samples/sec: 2053.20 - lr: 0.000012 - momentum: 0.000000
|
188 |
+
2023-10-13 12:38:57,493 epoch 8 - iter 801/894 - loss 0.01362775 - time (sec): 37.48 - samples/sec: 2067.50 - lr: 0.000012 - momentum: 0.000000
|
189 |
+
2023-10-13 12:39:01,513 epoch 8 - iter 890/894 - loss 0.01332056 - time (sec): 41.50 - samples/sec: 2077.00 - lr: 0.000011 - momentum: 0.000000
|
190 |
+
2023-10-13 12:39:01,685 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-10-13 12:39:01,685 EPOCH 8 done: loss 0.0133 - lr: 0.000011
|
192 |
+
2023-10-13 12:39:10,171 DEV : loss 0.2714207172393799 - f1-score (micro avg) 0.7702
|
193 |
+
2023-10-13 12:39:10,205 saving best model
|
194 |
+
2023-10-13 12:39:10,686 ----------------------------------------------------------------------------------------------------
|
195 |
+
2023-10-13 12:39:15,078 epoch 9 - iter 89/894 - loss 0.00547130 - time (sec): 4.39 - samples/sec: 1971.39 - lr: 0.000011 - momentum: 0.000000
|
196 |
+
2023-10-13 12:39:19,244 epoch 9 - iter 178/894 - loss 0.00963629 - time (sec): 8.56 - samples/sec: 1993.56 - lr: 0.000010 - momentum: 0.000000
|
197 |
+
2023-10-13 12:39:23,663 epoch 9 - iter 267/894 - loss 0.01066901 - time (sec): 12.97 - samples/sec: 1953.09 - lr: 0.000009 - momentum: 0.000000
|
198 |
+
2023-10-13 12:39:27,955 epoch 9 - iter 356/894 - loss 0.01008720 - time (sec): 17.27 - samples/sec: 1972.23 - lr: 0.000009 - momentum: 0.000000
|
199 |
+
2023-10-13 12:39:32,716 epoch 9 - iter 445/894 - loss 0.00899087 - time (sec): 22.03 - samples/sec: 1989.31 - lr: 0.000008 - momentum: 0.000000
|
200 |
+
2023-10-13 12:39:37,235 epoch 9 - iter 534/894 - loss 0.00832282 - time (sec): 26.55 - samples/sec: 1967.26 - lr: 0.000008 - momentum: 0.000000
|
201 |
+
2023-10-13 12:39:41,682 epoch 9 - iter 623/894 - loss 0.00840774 - time (sec): 30.99 - samples/sec: 1954.70 - lr: 0.000007 - momentum: 0.000000
|
202 |
+
2023-10-13 12:39:46,042 epoch 9 - iter 712/894 - loss 0.00907033 - time (sec): 35.35 - samples/sec: 1965.05 - lr: 0.000007 - momentum: 0.000000
|
203 |
+
2023-10-13 12:39:50,191 epoch 9 - iter 801/894 - loss 0.00943423 - time (sec): 39.50 - samples/sec: 1962.69 - lr: 0.000006 - momentum: 0.000000
|
204 |
+
2023-10-13 12:39:54,425 epoch 9 - iter 890/894 - loss 0.00956840 - time (sec): 43.74 - samples/sec: 1970.62 - lr: 0.000006 - momentum: 0.000000
|
205 |
+
2023-10-13 12:39:54,626 ----------------------------------------------------------------------------------------------------
|
206 |
+
2023-10-13 12:39:54,627 EPOCH 9 done: loss 0.0098 - lr: 0.000006
|
207 |
+
2023-10-13 12:40:03,411 DEV : loss 0.25177356600761414 - f1-score (micro avg) 0.7839
|
208 |
+
2023-10-13 12:40:03,439 saving best model
|
209 |
+
2023-10-13 12:40:03,879 ----------------------------------------------------------------------------------------------------
|
210 |
+
2023-10-13 12:40:08,201 epoch 10 - iter 89/894 - loss 0.00028415 - time (sec): 4.32 - samples/sec: 2139.25 - lr: 0.000005 - momentum: 0.000000
|
211 |
+
2023-10-13 12:40:12,369 epoch 10 - iter 178/894 - loss 0.00242940 - time (sec): 8.49 - samples/sec: 2042.29 - lr: 0.000004 - momentum: 0.000000
|
212 |
+
2023-10-13 12:40:16,627 epoch 10 - iter 267/894 - loss 0.00404990 - time (sec): 12.75 - samples/sec: 2020.69 - lr: 0.000004 - momentum: 0.000000
|
213 |
+
2023-10-13 12:40:20,968 epoch 10 - iter 356/894 - loss 0.00350026 - time (sec): 17.09 - samples/sec: 2079.62 - lr: 0.000003 - momentum: 0.000000
|
214 |
+
2023-10-13 12:40:25,142 epoch 10 - iter 445/894 - loss 0.00462522 - time (sec): 21.26 - samples/sec: 2064.72 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-10-13 12:40:29,316 epoch 10 - iter 534/894 - loss 0.00559551 - time (sec): 25.44 - samples/sec: 2060.31 - lr: 0.000002 - momentum: 0.000000
|
216 |
+
2023-10-13 12:40:33,584 epoch 10 - iter 623/894 - loss 0.00545572 - time (sec): 29.70 - samples/sec: 2024.32 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-13 12:40:38,084 epoch 10 - iter 712/894 - loss 0.00477820 - time (sec): 34.20 - samples/sec: 2010.58 - lr: 0.000001 - momentum: 0.000000
|
218 |
+
2023-10-13 12:40:42,361 epoch 10 - iter 801/894 - loss 0.00505387 - time (sec): 38.48 - samples/sec: 1999.45 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-13 12:40:46,742 epoch 10 - iter 890/894 - loss 0.00486550 - time (sec): 42.86 - samples/sec: 2012.22 - lr: 0.000000 - momentum: 0.000000
|
220 |
+
2023-10-13 12:40:46,927 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-13 12:40:46,927 EPOCH 10 done: loss 0.0048 - lr: 0.000000
|
222 |
+
2023-10-13 12:40:56,024 DEV : loss 0.2590446472167969 - f1-score (micro avg) 0.786
|
223 |
+
2023-10-13 12:40:56,051 saving best model
|
224 |
+
2023-10-13 12:40:56,820 ----------------------------------------------------------------------------------------------------
|
225 |
+
2023-10-13 12:40:56,822 Loading model from best epoch ...
|
226 |
+
2023-10-13 12:40:58,285 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
227 |
+
2023-10-13 12:41:03,540
|
228 |
+
Results:
|
229 |
+
- F-score (micro) 0.7304
|
230 |
+
- F-score (macro) 0.6539
|
231 |
+
- Accuracy 0.5962
|
232 |
+
|
233 |
+
By class:
|
234 |
+
precision recall f1-score support
|
235 |
+
|
236 |
+
loc 0.8065 0.8322 0.8192 596
|
237 |
+
pers 0.6715 0.6937 0.6824 333
|
238 |
+
org 0.5800 0.4394 0.5000 132
|
239 |
+
prod 0.6735 0.5000 0.5739 66
|
240 |
+
time 0.6939 0.6939 0.6939 49
|
241 |
+
|
242 |
+
micro avg 0.7364 0.7245 0.7304 1176
|
243 |
+
macro avg 0.6851 0.6318 0.6539 1176
|
244 |
+
weighted avg 0.7307 0.7245 0.7256 1176
|
245 |
+
|
246 |
+
2023-10-13 12:41:03,540 ----------------------------------------------------------------------------------------------------
|