Upload ./training.log with huggingface_hub
Browse files- training.log +509 -0
training.log
ADDED
@@ -0,0 +1,509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-23 19:59:21,191 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-23 19:59:21,192 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=25, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-23 19:59:21,193 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-23 19:59:21,193 MultiCorpus: 966 train + 219 dev + 204 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
|
317 |
+
2023-10-23 19:59:21,193 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-23 19:59:21,193 Train: 966 sentences
|
319 |
+
2023-10-23 19:59:21,193 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-23 19:59:21,193 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-23 19:59:21,193 Training Params:
|
322 |
+
2023-10-23 19:59:21,193 - learning_rate: "5e-05"
|
323 |
+
2023-10-23 19:59:21,193 - mini_batch_size: "8"
|
324 |
+
2023-10-23 19:59:21,193 - max_epochs: "10"
|
325 |
+
2023-10-23 19:59:21,193 - shuffle: "True"
|
326 |
+
2023-10-23 19:59:21,193 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-23 19:59:21,193 Plugins:
|
328 |
+
2023-10-23 19:59:21,193 - TensorboardLogger
|
329 |
+
2023-10-23 19:59:21,193 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-23 19:59:21,193 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-23 19:59:21,193 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-23 19:59:21,193 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-23 19:59:21,193 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-23 19:59:21,193 Computation:
|
335 |
+
2023-10-23 19:59:21,193 - compute on device: cuda:0
|
336 |
+
2023-10-23 19:59:21,193 - embedding storage: none
|
337 |
+
2023-10-23 19:59:21,193 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-23 19:59:21,193 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
|
339 |
+
2023-10-23 19:59:21,193 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-23 19:59:21,193 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-23 19:59:21,193 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-23 19:59:22,177 epoch 1 - iter 12/121 - loss 3.07959071 - time (sec): 0.98 - samples/sec: 2340.27 - lr: 0.000005 - momentum: 0.000000
|
343 |
+
2023-10-23 19:59:23,275 epoch 1 - iter 24/121 - loss 2.38609019 - time (sec): 2.08 - samples/sec: 2474.23 - lr: 0.000010 - momentum: 0.000000
|
344 |
+
2023-10-23 19:59:24,277 epoch 1 - iter 36/121 - loss 1.84215632 - time (sec): 3.08 - samples/sec: 2425.53 - lr: 0.000014 - momentum: 0.000000
|
345 |
+
2023-10-23 19:59:25,346 epoch 1 - iter 48/121 - loss 1.52491414 - time (sec): 4.15 - samples/sec: 2395.32 - lr: 0.000019 - momentum: 0.000000
|
346 |
+
2023-10-23 19:59:26,459 epoch 1 - iter 60/121 - loss 1.35065987 - time (sec): 5.27 - samples/sec: 2361.06 - lr: 0.000024 - momentum: 0.000000
|
347 |
+
2023-10-23 19:59:27,555 epoch 1 - iter 72/121 - loss 1.22720738 - time (sec): 6.36 - samples/sec: 2319.60 - lr: 0.000029 - momentum: 0.000000
|
348 |
+
2023-10-23 19:59:28,645 epoch 1 - iter 84/121 - loss 1.10984601 - time (sec): 7.45 - samples/sec: 2318.37 - lr: 0.000034 - momentum: 0.000000
|
349 |
+
2023-10-23 19:59:29,702 epoch 1 - iter 96/121 - loss 1.01430418 - time (sec): 8.51 - samples/sec: 2318.42 - lr: 0.000039 - momentum: 0.000000
|
350 |
+
2023-10-23 19:59:30,869 epoch 1 - iter 108/121 - loss 0.93461040 - time (sec): 9.67 - samples/sec: 2291.36 - lr: 0.000044 - momentum: 0.000000
|
351 |
+
2023-10-23 19:59:31,861 epoch 1 - iter 120/121 - loss 0.86737349 - time (sec): 10.67 - samples/sec: 2295.52 - lr: 0.000049 - momentum: 0.000000
|
352 |
+
2023-10-23 19:59:31,937 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-23 19:59:31,938 EPOCH 1 done: loss 0.8603 - lr: 0.000049
|
354 |
+
2023-10-23 19:59:32,764 DEV : loss 0.19693243503570557 - f1-score (micro avg) 0.6116
|
355 |
+
2023-10-23 19:59:32,768 saving best model
|
356 |
+
2023-10-23 19:59:33,244 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-23 19:59:34,297 epoch 2 - iter 12/121 - loss 0.21980535 - time (sec): 1.05 - samples/sec: 2376.67 - lr: 0.000049 - momentum: 0.000000
|
358 |
+
2023-10-23 19:59:35,399 epoch 2 - iter 24/121 - loss 0.20510598 - time (sec): 2.15 - samples/sec: 2293.52 - lr: 0.000049 - momentum: 0.000000
|
359 |
+
2023-10-23 19:59:36,442 epoch 2 - iter 36/121 - loss 0.20010149 - time (sec): 3.20 - samples/sec: 2343.54 - lr: 0.000048 - momentum: 0.000000
|
360 |
+
2023-10-23 19:59:37,464 epoch 2 - iter 48/121 - loss 0.20045052 - time (sec): 4.22 - samples/sec: 2342.73 - lr: 0.000048 - momentum: 0.000000
|
361 |
+
2023-10-23 19:59:38,564 epoch 2 - iter 60/121 - loss 0.18472354 - time (sec): 5.32 - samples/sec: 2318.48 - lr: 0.000047 - momentum: 0.000000
|
362 |
+
2023-10-23 19:59:39,630 epoch 2 - iter 72/121 - loss 0.16871403 - time (sec): 6.38 - samples/sec: 2303.89 - lr: 0.000047 - momentum: 0.000000
|
363 |
+
2023-10-23 19:59:40,703 epoch 2 - iter 84/121 - loss 0.16894935 - time (sec): 7.46 - samples/sec: 2314.11 - lr: 0.000046 - momentum: 0.000000
|
364 |
+
2023-10-23 19:59:41,781 epoch 2 - iter 96/121 - loss 0.16727768 - time (sec): 8.54 - samples/sec: 2306.80 - lr: 0.000046 - momentum: 0.000000
|
365 |
+
2023-10-23 19:59:42,794 epoch 2 - iter 108/121 - loss 0.16175313 - time (sec): 9.55 - samples/sec: 2314.72 - lr: 0.000045 - momentum: 0.000000
|
366 |
+
2023-10-23 19:59:43,835 epoch 2 - iter 120/121 - loss 0.16392006 - time (sec): 10.59 - samples/sec: 2316.97 - lr: 0.000045 - momentum: 0.000000
|
367 |
+
2023-10-23 19:59:43,918 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-23 19:59:43,918 EPOCH 2 done: loss 0.1657 - lr: 0.000045
|
369 |
+
2023-10-23 19:59:44,611 DEV : loss 0.13358022272586823 - f1-score (micro avg) 0.7915
|
370 |
+
2023-10-23 19:59:44,615 saving best model
|
371 |
+
2023-10-23 19:59:45,308 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-23 19:59:46,293 epoch 3 - iter 12/121 - loss 0.07053205 - time (sec): 0.98 - samples/sec: 2325.21 - lr: 0.000044 - momentum: 0.000000
|
373 |
+
2023-10-23 19:59:47,376 epoch 3 - iter 24/121 - loss 0.08748616 - time (sec): 2.07 - samples/sec: 2216.18 - lr: 0.000043 - momentum: 0.000000
|
374 |
+
2023-10-23 19:59:48,539 epoch 3 - iter 36/121 - loss 0.08503074 - time (sec): 3.23 - samples/sec: 2253.63 - lr: 0.000043 - momentum: 0.000000
|
375 |
+
2023-10-23 19:59:49,609 epoch 3 - iter 48/121 - loss 0.08134210 - time (sec): 4.30 - samples/sec: 2238.74 - lr: 0.000042 - momentum: 0.000000
|
376 |
+
2023-10-23 19:59:50,663 epoch 3 - iter 60/121 - loss 0.09072919 - time (sec): 5.35 - samples/sec: 2301.36 - lr: 0.000042 - momentum: 0.000000
|
377 |
+
2023-10-23 19:59:51,729 epoch 3 - iter 72/121 - loss 0.09249330 - time (sec): 6.42 - samples/sec: 2266.79 - lr: 0.000041 - momentum: 0.000000
|
378 |
+
2023-10-23 19:59:52,847 epoch 3 - iter 84/121 - loss 0.09443135 - time (sec): 7.54 - samples/sec: 2284.59 - lr: 0.000041 - momentum: 0.000000
|
379 |
+
2023-10-23 19:59:53,867 epoch 3 - iter 96/121 - loss 0.09325762 - time (sec): 8.56 - samples/sec: 2281.48 - lr: 0.000040 - momentum: 0.000000
|
380 |
+
2023-10-23 19:59:54,922 epoch 3 - iter 108/121 - loss 0.09097686 - time (sec): 9.61 - samples/sec: 2278.31 - lr: 0.000040 - momentum: 0.000000
|
381 |
+
2023-10-23 19:59:56,031 epoch 3 - iter 120/121 - loss 0.09128076 - time (sec): 10.72 - samples/sec: 2290.73 - lr: 0.000039 - momentum: 0.000000
|
382 |
+
2023-10-23 19:59:56,114 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-23 19:59:56,114 EPOCH 3 done: loss 0.0910 - lr: 0.000039
|
384 |
+
2023-10-23 19:59:56,807 DEV : loss 0.1323053240776062 - f1-score (micro avg) 0.8106
|
385 |
+
2023-10-23 19:59:56,811 saving best model
|
386 |
+
2023-10-23 19:59:57,406 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-23 19:59:58,417 epoch 4 - iter 12/121 - loss 0.05092027 - time (sec): 1.01 - samples/sec: 2312.39 - lr: 0.000038 - momentum: 0.000000
|
388 |
+
2023-10-23 19:59:59,520 epoch 4 - iter 24/121 - loss 0.06212240 - time (sec): 2.11 - samples/sec: 2304.30 - lr: 0.000038 - momentum: 0.000000
|
389 |
+
2023-10-23 20:00:00,562 epoch 4 - iter 36/121 - loss 0.05852911 - time (sec): 3.15 - samples/sec: 2276.45 - lr: 0.000037 - momentum: 0.000000
|
390 |
+
2023-10-23 20:00:01,620 epoch 4 - iter 48/121 - loss 0.06036113 - time (sec): 4.21 - samples/sec: 2270.68 - lr: 0.000037 - momentum: 0.000000
|
391 |
+
2023-10-23 20:00:02,680 epoch 4 - iter 60/121 - loss 0.05609362 - time (sec): 5.27 - samples/sec: 2276.99 - lr: 0.000036 - momentum: 0.000000
|
392 |
+
2023-10-23 20:00:03,701 epoch 4 - iter 72/121 - loss 0.05240872 - time (sec): 6.29 - samples/sec: 2247.96 - lr: 0.000036 - momentum: 0.000000
|
393 |
+
2023-10-23 20:00:04,781 epoch 4 - iter 84/121 - loss 0.04834580 - time (sec): 7.37 - samples/sec: 2228.20 - lr: 0.000035 - momentum: 0.000000
|
394 |
+
2023-10-23 20:00:05,957 epoch 4 - iter 96/121 - loss 0.05473980 - time (sec): 8.55 - samples/sec: 2254.70 - lr: 0.000035 - momentum: 0.000000
|
395 |
+
2023-10-23 20:00:07,110 epoch 4 - iter 108/121 - loss 0.05895589 - time (sec): 9.70 - samples/sec: 2268.69 - lr: 0.000034 - momentum: 0.000000
|
396 |
+
2023-10-23 20:00:08,206 epoch 4 - iter 120/121 - loss 0.05978098 - time (sec): 10.80 - samples/sec: 2275.78 - lr: 0.000034 - momentum: 0.000000
|
397 |
+
2023-10-23 20:00:08,290 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-23 20:00:08,290 EPOCH 4 done: loss 0.0597 - lr: 0.000034
|
399 |
+
2023-10-23 20:00:08,986 DEV : loss 0.1290253847837448 - f1-score (micro avg) 0.79
|
400 |
+
2023-10-23 20:00:08,989 ----------------------------------------------------------------------------------------------------
|
401 |
+
2023-10-23 20:00:10,039 epoch 5 - iter 12/121 - loss 0.03430261 - time (sec): 1.05 - samples/sec: 2397.71 - lr: 0.000033 - momentum: 0.000000
|
402 |
+
2023-10-23 20:00:11,110 epoch 5 - iter 24/121 - loss 0.03113545 - time (sec): 2.12 - samples/sec: 2368.57 - lr: 0.000032 - momentum: 0.000000
|
403 |
+
2023-10-23 20:00:12,219 epoch 5 - iter 36/121 - loss 0.03389822 - time (sec): 3.23 - samples/sec: 2338.77 - lr: 0.000032 - momentum: 0.000000
|
404 |
+
2023-10-23 20:00:13,228 epoch 5 - iter 48/121 - loss 0.03500522 - time (sec): 4.24 - samples/sec: 2356.81 - lr: 0.000031 - momentum: 0.000000
|
405 |
+
2023-10-23 20:00:14,317 epoch 5 - iter 60/121 - loss 0.03690220 - time (sec): 5.33 - samples/sec: 2368.75 - lr: 0.000031 - momentum: 0.000000
|
406 |
+
2023-10-23 20:00:15,318 epoch 5 - iter 72/121 - loss 0.03710540 - time (sec): 6.33 - samples/sec: 2356.98 - lr: 0.000030 - momentum: 0.000000
|
407 |
+
2023-10-23 20:00:16,402 epoch 5 - iter 84/121 - loss 0.03808002 - time (sec): 7.41 - samples/sec: 2338.35 - lr: 0.000030 - momentum: 0.000000
|
408 |
+
2023-10-23 20:00:17,429 epoch 5 - iter 96/121 - loss 0.03712274 - time (sec): 8.44 - samples/sec: 2353.04 - lr: 0.000029 - momentum: 0.000000
|
409 |
+
2023-10-23 20:00:18,560 epoch 5 - iter 108/121 - loss 0.04007529 - time (sec): 9.57 - samples/sec: 2348.40 - lr: 0.000029 - momentum: 0.000000
|
410 |
+
2023-10-23 20:00:19,687 epoch 5 - iter 120/121 - loss 0.03992887 - time (sec): 10.70 - samples/sec: 2306.30 - lr: 0.000028 - momentum: 0.000000
|
411 |
+
2023-10-23 20:00:19,750 ----------------------------------------------------------------------------------------------------
|
412 |
+
2023-10-23 20:00:19,750 EPOCH 5 done: loss 0.0403 - lr: 0.000028
|
413 |
+
2023-10-23 20:00:20,442 DEV : loss 0.1379198580980301 - f1-score (micro avg) 0.8054
|
414 |
+
2023-10-23 20:00:20,446 ----------------------------------------------------------------------------------------------------
|
415 |
+
2023-10-23 20:00:21,497 epoch 6 - iter 12/121 - loss 0.02230947 - time (sec): 1.05 - samples/sec: 2505.91 - lr: 0.000027 - momentum: 0.000000
|
416 |
+
2023-10-23 20:00:22,602 epoch 6 - iter 24/121 - loss 0.02239796 - time (sec): 2.16 - samples/sec: 2310.67 - lr: 0.000027 - momentum: 0.000000
|
417 |
+
2023-10-23 20:00:23,718 epoch 6 - iter 36/121 - loss 0.02492799 - time (sec): 3.27 - samples/sec: 2321.90 - lr: 0.000026 - momentum: 0.000000
|
418 |
+
2023-10-23 20:00:24,786 epoch 6 - iter 48/121 - loss 0.02725830 - time (sec): 4.34 - samples/sec: 2340.60 - lr: 0.000026 - momentum: 0.000000
|
419 |
+
2023-10-23 20:00:25,835 epoch 6 - iter 60/121 - loss 0.02864588 - time (sec): 5.39 - samples/sec: 2306.85 - lr: 0.000025 - momentum: 0.000000
|
420 |
+
2023-10-23 20:00:26,930 epoch 6 - iter 72/121 - loss 0.02827687 - time (sec): 6.48 - samples/sec: 2279.64 - lr: 0.000025 - momentum: 0.000000
|
421 |
+
2023-10-23 20:00:27,955 epoch 6 - iter 84/121 - loss 0.02653019 - time (sec): 7.51 - samples/sec: 2295.30 - lr: 0.000024 - momentum: 0.000000
|
422 |
+
2023-10-23 20:00:29,025 epoch 6 - iter 96/121 - loss 0.02717871 - time (sec): 8.58 - samples/sec: 2282.48 - lr: 0.000024 - momentum: 0.000000
|
423 |
+
2023-10-23 20:00:30,101 epoch 6 - iter 108/121 - loss 0.02708385 - time (sec): 9.65 - samples/sec: 2275.35 - lr: 0.000023 - momentum: 0.000000
|
424 |
+
2023-10-23 20:00:31,133 epoch 6 - iter 120/121 - loss 0.02633747 - time (sec): 10.69 - samples/sec: 2298.63 - lr: 0.000022 - momentum: 0.000000
|
425 |
+
2023-10-23 20:00:31,214 ----------------------------------------------------------------------------------------------------
|
426 |
+
2023-10-23 20:00:31,214 EPOCH 6 done: loss 0.0263 - lr: 0.000022
|
427 |
+
2023-10-23 20:00:31,913 DEV : loss 0.16080670058727264 - f1-score (micro avg) 0.8258
|
428 |
+
2023-10-23 20:00:31,917 saving best model
|
429 |
+
2023-10-23 20:00:32,581 ----------------------------------------------------------------------------------------------------
|
430 |
+
2023-10-23 20:00:33,615 epoch 7 - iter 12/121 - loss 0.02074966 - time (sec): 1.03 - samples/sec: 2311.18 - lr: 0.000022 - momentum: 0.000000
|
431 |
+
2023-10-23 20:00:34,651 epoch 7 - iter 24/121 - loss 0.01878873 - time (sec): 2.07 - samples/sec: 2223.35 - lr: 0.000021 - momentum: 0.000000
|
432 |
+
2023-10-23 20:00:35,744 epoch 7 - iter 36/121 - loss 0.01720420 - time (sec): 3.16 - samples/sec: 2200.01 - lr: 0.000021 - momentum: 0.000000
|
433 |
+
2023-10-23 20:00:36,788 epoch 7 - iter 48/121 - loss 0.01932259 - time (sec): 4.21 - samples/sec: 2202.57 - lr: 0.000020 - momentum: 0.000000
|
434 |
+
2023-10-23 20:00:37,774 epoch 7 - iter 60/121 - loss 0.01914114 - time (sec): 5.19 - samples/sec: 2224.74 - lr: 0.000020 - momentum: 0.000000
|
435 |
+
2023-10-23 20:00:38,862 epoch 7 - iter 72/121 - loss 0.01758141 - time (sec): 6.28 - samples/sec: 2271.85 - lr: 0.000019 - momentum: 0.000000
|
436 |
+
2023-10-23 20:00:40,038 epoch 7 - iter 84/121 - loss 0.01685052 - time (sec): 7.46 - samples/sec: 2281.38 - lr: 0.000019 - momentum: 0.000000
|
437 |
+
2023-10-23 20:00:41,100 epoch 7 - iter 96/121 - loss 0.01552190 - time (sec): 8.52 - samples/sec: 2280.82 - lr: 0.000018 - momentum: 0.000000
|
438 |
+
2023-10-23 20:00:42,229 epoch 7 - iter 108/121 - loss 0.01818659 - time (sec): 9.65 - samples/sec: 2287.84 - lr: 0.000017 - momentum: 0.000000
|
439 |
+
2023-10-23 20:00:43,311 epoch 7 - iter 120/121 - loss 0.01940174 - time (sec): 10.73 - samples/sec: 2296.03 - lr: 0.000017 - momentum: 0.000000
|
440 |
+
2023-10-23 20:00:43,382 ----------------------------------------------------------------------------------------------------
|
441 |
+
2023-10-23 20:00:43,383 EPOCH 7 done: loss 0.0202 - lr: 0.000017
|
442 |
+
2023-10-23 20:00:44,081 DEV : loss 0.18020081520080566 - f1-score (micro avg) 0.8294
|
443 |
+
2023-10-23 20:00:44,085 saving best model
|
444 |
+
2023-10-23 20:00:44,751 ----------------------------------------------------------------------------------------------------
|
445 |
+
2023-10-23 20:00:45,809 epoch 8 - iter 12/121 - loss 0.01761408 - time (sec): 1.06 - samples/sec: 2348.94 - lr: 0.000016 - momentum: 0.000000
|
446 |
+
2023-10-23 20:00:46,831 epoch 8 - iter 24/121 - loss 0.02027595 - time (sec): 2.08 - samples/sec: 2350.51 - lr: 0.000016 - momentum: 0.000000
|
447 |
+
2023-10-23 20:00:47,865 epoch 8 - iter 36/121 - loss 0.01628910 - time (sec): 3.11 - samples/sec: 2452.51 - lr: 0.000015 - momentum: 0.000000
|
448 |
+
2023-10-23 20:00:48,966 epoch 8 - iter 48/121 - loss 0.01485485 - time (sec): 4.21 - samples/sec: 2394.43 - lr: 0.000015 - momentum: 0.000000
|
449 |
+
2023-10-23 20:00:49,976 epoch 8 - iter 60/121 - loss 0.01541187 - time (sec): 5.22 - samples/sec: 2367.34 - lr: 0.000014 - momentum: 0.000000
|
450 |
+
2023-10-23 20:00:51,033 epoch 8 - iter 72/121 - loss 0.01495578 - time (sec): 6.28 - samples/sec: 2338.86 - lr: 0.000014 - momentum: 0.000000
|
451 |
+
2023-10-23 20:00:52,185 epoch 8 - iter 84/121 - loss 0.01524300 - time (sec): 7.43 - samples/sec: 2310.80 - lr: 0.000013 - momentum: 0.000000
|
452 |
+
2023-10-23 20:00:53,341 epoch 8 - iter 96/121 - loss 0.01542470 - time (sec): 8.59 - samples/sec: 2315.10 - lr: 0.000013 - momentum: 0.000000
|
453 |
+
2023-10-23 20:00:54,382 epoch 8 - iter 108/121 - loss 0.01467537 - time (sec): 9.63 - samples/sec: 2314.47 - lr: 0.000012 - momentum: 0.000000
|
454 |
+
2023-10-23 20:00:55,470 epoch 8 - iter 120/121 - loss 0.01388236 - time (sec): 10.72 - samples/sec: 2299.78 - lr: 0.000011 - momentum: 0.000000
|
455 |
+
2023-10-23 20:00:55,537 ----------------------------------------------------------------------------------------------------
|
456 |
+
2023-10-23 20:00:55,537 EPOCH 8 done: loss 0.0139 - lr: 0.000011
|
457 |
+
2023-10-23 20:00:56,237 DEV : loss 0.18324138224124908 - f1-score (micro avg) 0.8216
|
458 |
+
2023-10-23 20:00:56,241 ----------------------------------------------------------------------------------------------------
|
459 |
+
2023-10-23 20:00:57,349 epoch 9 - iter 12/121 - loss 0.00782875 - time (sec): 1.11 - samples/sec: 2349.70 - lr: 0.000011 - momentum: 0.000000
|
460 |
+
2023-10-23 20:00:58,425 epoch 9 - iter 24/121 - loss 0.00702085 - time (sec): 2.18 - samples/sec: 2335.49 - lr: 0.000010 - momentum: 0.000000
|
461 |
+
2023-10-23 20:00:59,503 epoch 9 - iter 36/121 - loss 0.01311710 - time (sec): 3.26 - samples/sec: 2308.62 - lr: 0.000010 - momentum: 0.000000
|
462 |
+
2023-10-23 20:01:00,553 epoch 9 - iter 48/121 - loss 0.01076139 - time (sec): 4.31 - samples/sec: 2283.64 - lr: 0.000009 - momentum: 0.000000
|
463 |
+
2023-10-23 20:01:01,561 epoch 9 - iter 60/121 - loss 0.00924692 - time (sec): 5.32 - samples/sec: 2234.26 - lr: 0.000009 - momentum: 0.000000
|
464 |
+
2023-10-23 20:01:02,677 epoch 9 - iter 72/121 - loss 0.00840260 - time (sec): 6.44 - samples/sec: 2253.81 - lr: 0.000008 - momentum: 0.000000
|
465 |
+
2023-10-23 20:01:03,694 epoch 9 - iter 84/121 - loss 0.00870079 - time (sec): 7.45 - samples/sec: 2267.62 - lr: 0.000008 - momentum: 0.000000
|
466 |
+
2023-10-23 20:01:04,830 epoch 9 - iter 96/121 - loss 0.00802366 - time (sec): 8.59 - samples/sec: 2270.15 - lr: 0.000007 - momentum: 0.000000
|
467 |
+
2023-10-23 20:01:05,923 epoch 9 - iter 108/121 - loss 0.00812464 - time (sec): 9.68 - samples/sec: 2262.78 - lr: 0.000006 - momentum: 0.000000
|
468 |
+
2023-10-23 20:01:06,981 epoch 9 - iter 120/121 - loss 0.00750621 - time (sec): 10.74 - samples/sec: 2292.48 - lr: 0.000006 - momentum: 0.000000
|
469 |
+
2023-10-23 20:01:07,046 ----------------------------------------------------------------------------------------------------
|
470 |
+
2023-10-23 20:01:07,046 EPOCH 9 done: loss 0.0075 - lr: 0.000006
|
471 |
+
2023-10-23 20:01:07,751 DEV : loss 0.1951816827058792 - f1-score (micro avg) 0.8374
|
472 |
+
2023-10-23 20:01:07,755 saving best model
|
473 |
+
2023-10-23 20:01:08,418 ----------------------------------------------------------------------------------------------------
|
474 |
+
2023-10-23 20:01:09,526 epoch 10 - iter 12/121 - loss 0.02006047 - time (sec): 1.11 - samples/sec: 2195.41 - lr: 0.000005 - momentum: 0.000000
|
475 |
+
2023-10-23 20:01:10,545 epoch 10 - iter 24/121 - loss 0.01565914 - time (sec): 2.13 - samples/sec: 2137.48 - lr: 0.000005 - momentum: 0.000000
|
476 |
+
2023-10-23 20:01:11,598 epoch 10 - iter 36/121 - loss 0.01230843 - time (sec): 3.18 - samples/sec: 2209.25 - lr: 0.000004 - momentum: 0.000000
|
477 |
+
2023-10-23 20:01:12,729 epoch 10 - iter 48/121 - loss 0.01136140 - time (sec): 4.31 - samples/sec: 2230.78 - lr: 0.000004 - momentum: 0.000000
|
478 |
+
2023-10-23 20:01:13,739 epoch 10 - iter 60/121 - loss 0.01075316 - time (sec): 5.32 - samples/sec: 2258.11 - lr: 0.000003 - momentum: 0.000000
|
479 |
+
2023-10-23 20:01:14,788 epoch 10 - iter 72/121 - loss 0.01033628 - time (sec): 6.37 - samples/sec: 2281.18 - lr: 0.000003 - momentum: 0.000000
|
480 |
+
2023-10-23 20:01:15,930 epoch 10 - iter 84/121 - loss 0.00887929 - time (sec): 7.51 - samples/sec: 2294.81 - lr: 0.000002 - momentum: 0.000000
|
481 |
+
2023-10-23 20:01:17,033 epoch 10 - iter 96/121 - loss 0.00817613 - time (sec): 8.61 - samples/sec: 2283.21 - lr: 0.000001 - momentum: 0.000000
|
482 |
+
2023-10-23 20:01:18,109 epoch 10 - iter 108/121 - loss 0.00725123 - time (sec): 9.69 - samples/sec: 2308.58 - lr: 0.000001 - momentum: 0.000000
|
483 |
+
2023-10-23 20:01:19,161 epoch 10 - iter 120/121 - loss 0.00693442 - time (sec): 10.74 - samples/sec: 2294.35 - lr: 0.000000 - momentum: 0.000000
|
484 |
+
2023-10-23 20:01:19,225 ----------------------------------------------------------------------------------------------------
|
485 |
+
2023-10-23 20:01:19,226 EPOCH 10 done: loss 0.0069 - lr: 0.000000
|
486 |
+
2023-10-23 20:01:19,922 DEV : loss 0.20193332433700562 - f1-score (micro avg) 0.8273
|
487 |
+
2023-10-23 20:01:20,406 ----------------------------------------------------------------------------------------------------
|
488 |
+
2023-10-23 20:01:20,407 Loading model from best epoch ...
|
489 |
+
2023-10-23 20:01:21,963 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
|
490 |
+
2023-10-23 20:01:22,823
|
491 |
+
Results:
|
492 |
+
- F-score (micro) 0.8113
|
493 |
+
- F-score (macro) 0.5613
|
494 |
+
- Accuracy 0.7049
|
495 |
+
|
496 |
+
By class:
|
497 |
+
precision recall f1-score support
|
498 |
+
|
499 |
+
pers 0.8803 0.8993 0.8897 139
|
500 |
+
scope 0.7929 0.8605 0.8253 129
|
501 |
+
work 0.6667 0.7750 0.7168 80
|
502 |
+
loc 0.4286 0.3333 0.3750 9
|
503 |
+
date 0.0000 0.0000 0.0000 3
|
504 |
+
|
505 |
+
micro avg 0.7880 0.8361 0.8113 360
|
506 |
+
macro avg 0.5537 0.5736 0.5613 360
|
507 |
+
weighted avg 0.7829 0.8361 0.8079 360
|
508 |
+
|
509 |
+
2023-10-23 20:01:22,823 ----------------------------------------------------------------------------------------------------
|