Upload ./training.log with huggingface_hub
Browse files- training.log +508 -0
training.log
ADDED
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-23 19:08:24,656 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-23 19:08:24,657 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=25, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-23 19:08:24,658 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-23 19:08:24,658 MultiCorpus: 966 train + 219 dev + 204 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
|
317 |
+
2023-10-23 19:08:24,658 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-23 19:08:24,658 Train: 966 sentences
|
319 |
+
2023-10-23 19:08:24,658 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-23 19:08:24,658 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-23 19:08:24,658 Training Params:
|
322 |
+
2023-10-23 19:08:24,658 - learning_rate: "3e-05"
|
323 |
+
2023-10-23 19:08:24,658 - mini_batch_size: "4"
|
324 |
+
2023-10-23 19:08:24,658 - max_epochs: "10"
|
325 |
+
2023-10-23 19:08:24,658 - shuffle: "True"
|
326 |
+
2023-10-23 19:08:24,658 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-23 19:08:24,658 Plugins:
|
328 |
+
2023-10-23 19:08:24,658 - TensorboardLogger
|
329 |
+
2023-10-23 19:08:24,658 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-23 19:08:24,658 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-23 19:08:24,658 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-23 19:08:24,658 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-23 19:08:24,658 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-23 19:08:24,658 Computation:
|
335 |
+
2023-10-23 19:08:24,658 - compute on device: cuda:0
|
336 |
+
2023-10-23 19:08:24,658 - embedding storage: none
|
337 |
+
2023-10-23 19:08:24,658 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-23 19:08:24,658 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
|
339 |
+
2023-10-23 19:08:24,658 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-23 19:08:24,658 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-23 19:08:24,659 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-23 19:08:27,148 epoch 1 - iter 24/242 - loss 3.67278832 - time (sec): 2.49 - samples/sec: 954.86 - lr: 0.000003 - momentum: 0.000000
|
343 |
+
2023-10-23 19:08:28,624 epoch 1 - iter 48/242 - loss 2.95891825 - time (sec): 3.96 - samples/sec: 1163.54 - lr: 0.000006 - momentum: 0.000000
|
344 |
+
2023-10-23 19:08:30,098 epoch 1 - iter 72/242 - loss 2.14067705 - time (sec): 5.44 - samples/sec: 1312.83 - lr: 0.000009 - momentum: 0.000000
|
345 |
+
2023-10-23 19:08:31,609 epoch 1 - iter 96/242 - loss 1.70893243 - time (sec): 6.95 - samples/sec: 1448.77 - lr: 0.000012 - momentum: 0.000000
|
346 |
+
2023-10-23 19:08:33,034 epoch 1 - iter 120/242 - loss 1.50416905 - time (sec): 8.37 - samples/sec: 1450.06 - lr: 0.000015 - momentum: 0.000000
|
347 |
+
2023-10-23 19:08:34,527 epoch 1 - iter 144/242 - loss 1.31453287 - time (sec): 9.87 - samples/sec: 1482.04 - lr: 0.000018 - momentum: 0.000000
|
348 |
+
2023-10-23 19:08:36,008 epoch 1 - iter 168/242 - loss 1.18407796 - time (sec): 11.35 - samples/sec: 1493.53 - lr: 0.000021 - momentum: 0.000000
|
349 |
+
2023-10-23 19:08:37,517 epoch 1 - iter 192/242 - loss 1.05368018 - time (sec): 12.86 - samples/sec: 1526.00 - lr: 0.000024 - momentum: 0.000000
|
350 |
+
2023-10-23 19:08:39,008 epoch 1 - iter 216/242 - loss 0.96540438 - time (sec): 14.35 - samples/sec: 1538.74 - lr: 0.000027 - momentum: 0.000000
|
351 |
+
2023-10-23 19:08:40,490 epoch 1 - iter 240/242 - loss 0.89132846 - time (sec): 15.83 - samples/sec: 1549.55 - lr: 0.000030 - momentum: 0.000000
|
352 |
+
2023-10-23 19:08:40,609 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-23 19:08:40,610 EPOCH 1 done: loss 0.8843 - lr: 0.000030
|
354 |
+
2023-10-23 19:08:41,342 DEV : loss 0.16898205876350403 - f1-score (micro avg) 0.688
|
355 |
+
2023-10-23 19:08:41,346 saving best model
|
356 |
+
2023-10-23 19:08:41,905 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-23 19:08:43,374 epoch 2 - iter 24/242 - loss 0.14223354 - time (sec): 1.47 - samples/sec: 1563.85 - lr: 0.000030 - momentum: 0.000000
|
358 |
+
2023-10-23 19:08:44,896 epoch 2 - iter 48/242 - loss 0.12916219 - time (sec): 2.99 - samples/sec: 1604.35 - lr: 0.000029 - momentum: 0.000000
|
359 |
+
2023-10-23 19:08:46,388 epoch 2 - iter 72/242 - loss 0.14431620 - time (sec): 4.48 - samples/sec: 1634.23 - lr: 0.000029 - momentum: 0.000000
|
360 |
+
2023-10-23 19:08:47,846 epoch 2 - iter 96/242 - loss 0.15498269 - time (sec): 5.94 - samples/sec: 1581.27 - lr: 0.000029 - momentum: 0.000000
|
361 |
+
2023-10-23 19:08:49,407 epoch 2 - iter 120/242 - loss 0.14958350 - time (sec): 7.50 - samples/sec: 1620.93 - lr: 0.000028 - momentum: 0.000000
|
362 |
+
2023-10-23 19:08:50,852 epoch 2 - iter 144/242 - loss 0.15519379 - time (sec): 8.95 - samples/sec: 1598.16 - lr: 0.000028 - momentum: 0.000000
|
363 |
+
2023-10-23 19:08:52,342 epoch 2 - iter 168/242 - loss 0.15662606 - time (sec): 10.44 - samples/sec: 1617.00 - lr: 0.000028 - momentum: 0.000000
|
364 |
+
2023-10-23 19:08:53,905 epoch 2 - iter 192/242 - loss 0.15791561 - time (sec): 12.00 - samples/sec: 1637.53 - lr: 0.000027 - momentum: 0.000000
|
365 |
+
2023-10-23 19:08:55,386 epoch 2 - iter 216/242 - loss 0.15536465 - time (sec): 13.48 - samples/sec: 1631.40 - lr: 0.000027 - momentum: 0.000000
|
366 |
+
2023-10-23 19:08:56,903 epoch 2 - iter 240/242 - loss 0.15044906 - time (sec): 15.00 - samples/sec: 1640.89 - lr: 0.000027 - momentum: 0.000000
|
367 |
+
2023-10-23 19:08:57,017 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-23 19:08:57,018 EPOCH 2 done: loss 0.1500 - lr: 0.000027
|
369 |
+
2023-10-23 19:08:57,694 DEV : loss 0.11318839341402054 - f1-score (micro avg) 0.8138
|
370 |
+
2023-10-23 19:08:57,698 saving best model
|
371 |
+
2023-10-23 19:08:58,463 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-23 19:08:59,918 epoch 3 - iter 24/242 - loss 0.11898681 - time (sec): 1.45 - samples/sec: 1518.64 - lr: 0.000026 - momentum: 0.000000
|
373 |
+
2023-10-23 19:09:01,406 epoch 3 - iter 48/242 - loss 0.11011505 - time (sec): 2.94 - samples/sec: 1580.20 - lr: 0.000026 - momentum: 0.000000
|
374 |
+
2023-10-23 19:09:02,963 epoch 3 - iter 72/242 - loss 0.10956550 - time (sec): 4.50 - samples/sec: 1600.39 - lr: 0.000026 - momentum: 0.000000
|
375 |
+
2023-10-23 19:09:04,484 epoch 3 - iter 96/242 - loss 0.10869933 - time (sec): 6.02 - samples/sec: 1596.21 - lr: 0.000025 - momentum: 0.000000
|
376 |
+
2023-10-23 19:09:05,964 epoch 3 - iter 120/242 - loss 0.10589468 - time (sec): 7.50 - samples/sec: 1607.90 - lr: 0.000025 - momentum: 0.000000
|
377 |
+
2023-10-23 19:09:07,466 epoch 3 - iter 144/242 - loss 0.09866798 - time (sec): 9.00 - samples/sec: 1622.63 - lr: 0.000025 - momentum: 0.000000
|
378 |
+
2023-10-23 19:09:08,987 epoch 3 - iter 168/242 - loss 0.09126189 - time (sec): 10.52 - samples/sec: 1613.49 - lr: 0.000024 - momentum: 0.000000
|
379 |
+
2023-10-23 19:09:10,510 epoch 3 - iter 192/242 - loss 0.09019547 - time (sec): 12.05 - samples/sec: 1638.56 - lr: 0.000024 - momentum: 0.000000
|
380 |
+
2023-10-23 19:09:11,957 epoch 3 - iter 216/242 - loss 0.09440161 - time (sec): 13.49 - samples/sec: 1638.11 - lr: 0.000024 - momentum: 0.000000
|
381 |
+
2023-10-23 19:09:13,487 epoch 3 - iter 240/242 - loss 0.09448301 - time (sec): 15.02 - samples/sec: 1636.64 - lr: 0.000023 - momentum: 0.000000
|
382 |
+
2023-10-23 19:09:13,604 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-23 19:09:13,605 EPOCH 3 done: loss 0.0939 - lr: 0.000023
|
384 |
+
2023-10-23 19:09:14,282 DEV : loss 0.12148646265268326 - f1-score (micro avg) 0.8361
|
385 |
+
2023-10-23 19:09:14,286 saving best model
|
386 |
+
2023-10-23 19:09:14,974 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-23 19:09:16,469 epoch 4 - iter 24/242 - loss 0.05232625 - time (sec): 1.49 - samples/sec: 1565.00 - lr: 0.000023 - momentum: 0.000000
|
388 |
+
2023-10-23 19:09:18,007 epoch 4 - iter 48/242 - loss 0.06181919 - time (sec): 3.03 - samples/sec: 1610.17 - lr: 0.000023 - momentum: 0.000000
|
389 |
+
2023-10-23 19:09:19,519 epoch 4 - iter 72/242 - loss 0.05681268 - time (sec): 4.54 - samples/sec: 1612.44 - lr: 0.000022 - momentum: 0.000000
|
390 |
+
2023-10-23 19:09:21,011 epoch 4 - iter 96/242 - loss 0.05581204 - time (sec): 6.04 - samples/sec: 1634.76 - lr: 0.000022 - momentum: 0.000000
|
391 |
+
2023-10-23 19:09:22,526 epoch 4 - iter 120/242 - loss 0.05450289 - time (sec): 7.55 - samples/sec: 1665.43 - lr: 0.000022 - momentum: 0.000000
|
392 |
+
2023-10-23 19:09:24,062 epoch 4 - iter 144/242 - loss 0.05942248 - time (sec): 9.09 - samples/sec: 1676.96 - lr: 0.000021 - momentum: 0.000000
|
393 |
+
2023-10-23 19:09:25,505 epoch 4 - iter 168/242 - loss 0.06236623 - time (sec): 10.53 - samples/sec: 1653.02 - lr: 0.000021 - momentum: 0.000000
|
394 |
+
2023-10-23 19:09:26,997 epoch 4 - iter 192/242 - loss 0.06517078 - time (sec): 12.02 - samples/sec: 1645.21 - lr: 0.000021 - momentum: 0.000000
|
395 |
+
2023-10-23 19:09:28,498 epoch 4 - iter 216/242 - loss 0.06688996 - time (sec): 13.52 - samples/sec: 1649.95 - lr: 0.000020 - momentum: 0.000000
|
396 |
+
2023-10-23 19:09:29,976 epoch 4 - iter 240/242 - loss 0.06577576 - time (sec): 15.00 - samples/sec: 1644.74 - lr: 0.000020 - momentum: 0.000000
|
397 |
+
2023-10-23 19:09:30,085 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-23 19:09:30,085 EPOCH 4 done: loss 0.0657 - lr: 0.000020
|
399 |
+
2023-10-23 19:09:30,766 DEV : loss 0.14296689629554749 - f1-score (micro avg) 0.8371
|
400 |
+
2023-10-23 19:09:30,769 saving best model
|
401 |
+
2023-10-23 19:09:31,584 ----------------------------------------------------------------------------------------------------
|
402 |
+
2023-10-23 19:09:33,075 epoch 5 - iter 24/242 - loss 0.05084982 - time (sec): 1.49 - samples/sec: 1516.20 - lr: 0.000020 - momentum: 0.000000
|
403 |
+
2023-10-23 19:09:34,558 epoch 5 - iter 48/242 - loss 0.04919071 - time (sec): 2.97 - samples/sec: 1568.57 - lr: 0.000019 - momentum: 0.000000
|
404 |
+
2023-10-23 19:09:36,050 epoch 5 - iter 72/242 - loss 0.04639649 - time (sec): 4.47 - samples/sec: 1578.63 - lr: 0.000019 - momentum: 0.000000
|
405 |
+
2023-10-23 19:09:37,557 epoch 5 - iter 96/242 - loss 0.05195384 - time (sec): 5.97 - samples/sec: 1612.02 - lr: 0.000019 - momentum: 0.000000
|
406 |
+
2023-10-23 19:09:39,133 epoch 5 - iter 120/242 - loss 0.05347717 - time (sec): 7.55 - samples/sec: 1643.81 - lr: 0.000018 - momentum: 0.000000
|
407 |
+
2023-10-23 19:09:40,632 epoch 5 - iter 144/242 - loss 0.05618684 - time (sec): 9.05 - samples/sec: 1635.29 - lr: 0.000018 - momentum: 0.000000
|
408 |
+
2023-10-23 19:09:42,117 epoch 5 - iter 168/242 - loss 0.05282894 - time (sec): 10.53 - samples/sec: 1642.35 - lr: 0.000018 - momentum: 0.000000
|
409 |
+
2023-10-23 19:09:43,592 epoch 5 - iter 192/242 - loss 0.05381162 - time (sec): 12.01 - samples/sec: 1633.23 - lr: 0.000017 - momentum: 0.000000
|
410 |
+
2023-10-23 19:09:45,071 epoch 5 - iter 216/242 - loss 0.05106616 - time (sec): 13.49 - samples/sec: 1631.97 - lr: 0.000017 - momentum: 0.000000
|
411 |
+
2023-10-23 19:09:46,563 epoch 5 - iter 240/242 - loss 0.04927862 - time (sec): 14.98 - samples/sec: 1635.94 - lr: 0.000017 - momentum: 0.000000
|
412 |
+
2023-10-23 19:09:46,693 ----------------------------------------------------------------------------------------------------
|
413 |
+
2023-10-23 19:09:46,694 EPOCH 5 done: loss 0.0491 - lr: 0.000017
|
414 |
+
2023-10-23 19:09:47,503 DEV : loss 0.1406407207250595 - f1-score (micro avg) 0.8586
|
415 |
+
2023-10-23 19:09:47,507 saving best model
|
416 |
+
2023-10-23 19:09:48,337 ----------------------------------------------------------------------------------------------------
|
417 |
+
2023-10-23 19:09:49,861 epoch 6 - iter 24/242 - loss 0.02763052 - time (sec): 1.52 - samples/sec: 1640.20 - lr: 0.000016 - momentum: 0.000000
|
418 |
+
2023-10-23 19:09:51,367 epoch 6 - iter 48/242 - loss 0.03172378 - time (sec): 3.03 - samples/sec: 1638.57 - lr: 0.000016 - momentum: 0.000000
|
419 |
+
2023-10-23 19:09:52,874 epoch 6 - iter 72/242 - loss 0.03088796 - time (sec): 4.54 - samples/sec: 1605.08 - lr: 0.000016 - momentum: 0.000000
|
420 |
+
2023-10-23 19:09:54,322 epoch 6 - iter 96/242 - loss 0.03083092 - time (sec): 5.98 - samples/sec: 1593.30 - lr: 0.000015 - momentum: 0.000000
|
421 |
+
2023-10-23 19:09:55,885 epoch 6 - iter 120/242 - loss 0.03083829 - time (sec): 7.55 - samples/sec: 1631.99 - lr: 0.000015 - momentum: 0.000000
|
422 |
+
2023-10-23 19:09:57,389 epoch 6 - iter 144/242 - loss 0.03101966 - time (sec): 9.05 - samples/sec: 1630.36 - lr: 0.000015 - momentum: 0.000000
|
423 |
+
2023-10-23 19:09:58,912 epoch 6 - iter 168/242 - loss 0.03005750 - time (sec): 10.57 - samples/sec: 1612.84 - lr: 0.000014 - momentum: 0.000000
|
424 |
+
2023-10-23 19:10:00,420 epoch 6 - iter 192/242 - loss 0.03093790 - time (sec): 12.08 - samples/sec: 1623.25 - lr: 0.000014 - momentum: 0.000000
|
425 |
+
2023-10-23 19:10:01,945 epoch 6 - iter 216/242 - loss 0.03244273 - time (sec): 13.61 - samples/sec: 1614.91 - lr: 0.000014 - momentum: 0.000000
|
426 |
+
2023-10-23 19:10:03,457 epoch 6 - iter 240/242 - loss 0.03281395 - time (sec): 15.12 - samples/sec: 1624.79 - lr: 0.000013 - momentum: 0.000000
|
427 |
+
2023-10-23 19:10:03,569 ----------------------------------------------------------------------------------------------------
|
428 |
+
2023-10-23 19:10:03,570 EPOCH 6 done: loss 0.0330 - lr: 0.000013
|
429 |
+
2023-10-23 19:10:04,253 DEV : loss 0.16732417047023773 - f1-score (micro avg) 0.8203
|
430 |
+
2023-10-23 19:10:04,257 ----------------------------------------------------------------------------------------------------
|
431 |
+
2023-10-23 19:10:05,756 epoch 7 - iter 24/242 - loss 0.02010722 - time (sec): 1.50 - samples/sec: 1786.01 - lr: 0.000013 - momentum: 0.000000
|
432 |
+
2023-10-23 19:10:07,260 epoch 7 - iter 48/242 - loss 0.01912838 - time (sec): 3.00 - samples/sec: 1692.72 - lr: 0.000013 - momentum: 0.000000
|
433 |
+
2023-10-23 19:10:08,752 epoch 7 - iter 72/242 - loss 0.01980953 - time (sec): 4.49 - samples/sec: 1672.37 - lr: 0.000012 - momentum: 0.000000
|
434 |
+
2023-10-23 19:10:10,269 epoch 7 - iter 96/242 - loss 0.01804005 - time (sec): 6.01 - samples/sec: 1668.74 - lr: 0.000012 - momentum: 0.000000
|
435 |
+
2023-10-23 19:10:11,771 epoch 7 - iter 120/242 - loss 0.02131044 - time (sec): 7.51 - samples/sec: 1653.19 - lr: 0.000012 - momentum: 0.000000
|
436 |
+
2023-10-23 19:10:13,334 epoch 7 - iter 144/242 - loss 0.02211216 - time (sec): 9.08 - samples/sec: 1632.28 - lr: 0.000011 - momentum: 0.000000
|
437 |
+
2023-10-23 19:10:14,818 epoch 7 - iter 168/242 - loss 0.02084424 - time (sec): 10.56 - samples/sec: 1639.15 - lr: 0.000011 - momentum: 0.000000
|
438 |
+
2023-10-23 19:10:16,335 epoch 7 - iter 192/242 - loss 0.02001712 - time (sec): 12.08 - samples/sec: 1637.00 - lr: 0.000011 - momentum: 0.000000
|
439 |
+
2023-10-23 19:10:17,824 epoch 7 - iter 216/242 - loss 0.01982037 - time (sec): 13.57 - samples/sec: 1630.98 - lr: 0.000010 - momentum: 0.000000
|
440 |
+
2023-10-23 19:10:19,343 epoch 7 - iter 240/242 - loss 0.02068453 - time (sec): 15.09 - samples/sec: 1628.08 - lr: 0.000010 - momentum: 0.000000
|
441 |
+
2023-10-23 19:10:19,458 ----------------------------------------------------------------------------------------------------
|
442 |
+
2023-10-23 19:10:19,458 EPOCH 7 done: loss 0.0222 - lr: 0.000010
|
443 |
+
2023-10-23 19:10:20,144 DEV : loss 0.1981634944677353 - f1-score (micro avg) 0.8117
|
444 |
+
2023-10-23 19:10:20,148 ----------------------------------------------------------------------------------------------------
|
445 |
+
2023-10-23 19:10:21,661 epoch 8 - iter 24/242 - loss 0.01112978 - time (sec): 1.51 - samples/sec: 1643.20 - lr: 0.000010 - momentum: 0.000000
|
446 |
+
2023-10-23 19:10:23,193 epoch 8 - iter 48/242 - loss 0.01314728 - time (sec): 3.04 - samples/sec: 1633.53 - lr: 0.000009 - momentum: 0.000000
|
447 |
+
2023-10-23 19:10:24,698 epoch 8 - iter 72/242 - loss 0.01036883 - time (sec): 4.55 - samples/sec: 1613.16 - lr: 0.000009 - momentum: 0.000000
|
448 |
+
2023-10-23 19:10:26,181 epoch 8 - iter 96/242 - loss 0.00962037 - time (sec): 6.03 - samples/sec: 1615.05 - lr: 0.000009 - momentum: 0.000000
|
449 |
+
2023-10-23 19:10:27,664 epoch 8 - iter 120/242 - loss 0.00900148 - time (sec): 7.52 - samples/sec: 1590.82 - lr: 0.000008 - momentum: 0.000000
|
450 |
+
2023-10-23 19:10:29,153 epoch 8 - iter 144/242 - loss 0.01176402 - time (sec): 9.00 - samples/sec: 1605.00 - lr: 0.000008 - momentum: 0.000000
|
451 |
+
2023-10-23 19:10:30,671 epoch 8 - iter 168/242 - loss 0.01387140 - time (sec): 10.52 - samples/sec: 1614.93 - lr: 0.000008 - momentum: 0.000000
|
452 |
+
2023-10-23 19:10:32,239 epoch 8 - iter 192/242 - loss 0.01286732 - time (sec): 12.09 - samples/sec: 1636.86 - lr: 0.000007 - momentum: 0.000000
|
453 |
+
2023-10-23 19:10:33,735 epoch 8 - iter 216/242 - loss 0.01188376 - time (sec): 13.59 - samples/sec: 1637.46 - lr: 0.000007 - momentum: 0.000000
|
454 |
+
2023-10-23 19:10:35,237 epoch 8 - iter 240/242 - loss 0.01274869 - time (sec): 15.09 - samples/sec: 1622.43 - lr: 0.000007 - momentum: 0.000000
|
455 |
+
2023-10-23 19:10:35,361 ----------------------------------------------------------------------------------------------------
|
456 |
+
2023-10-23 19:10:35,361 EPOCH 8 done: loss 0.0126 - lr: 0.000007
|
457 |
+
2023-10-23 19:10:36,056 DEV : loss 0.1954435408115387 - f1-score (micro avg) 0.836
|
458 |
+
2023-10-23 19:10:36,060 ----------------------------------------------------------------------------------------------------
|
459 |
+
2023-10-23 19:10:37,530 epoch 9 - iter 24/242 - loss 0.03445182 - time (sec): 1.47 - samples/sec: 1639.08 - lr: 0.000006 - momentum: 0.000000
|
460 |
+
2023-10-23 19:10:39,032 epoch 9 - iter 48/242 - loss 0.01826025 - time (sec): 2.97 - samples/sec: 1653.82 - lr: 0.000006 - momentum: 0.000000
|
461 |
+
2023-10-23 19:10:40,575 epoch 9 - iter 72/242 - loss 0.01223116 - time (sec): 4.51 - samples/sec: 1638.54 - lr: 0.000006 - momentum: 0.000000
|
462 |
+
2023-10-23 19:10:42,117 epoch 9 - iter 96/242 - loss 0.01231785 - time (sec): 6.06 - samples/sec: 1665.45 - lr: 0.000005 - momentum: 0.000000
|
463 |
+
2023-10-23 19:10:43,614 epoch 9 - iter 120/242 - loss 0.01167177 - time (sec): 7.55 - samples/sec: 1649.32 - lr: 0.000005 - momentum: 0.000000
|
464 |
+
2023-10-23 19:10:45,156 epoch 9 - iter 144/242 - loss 0.01014355 - time (sec): 9.10 - samples/sec: 1658.01 - lr: 0.000005 - momentum: 0.000000
|
465 |
+
2023-10-23 19:10:46,651 epoch 9 - iter 168/242 - loss 0.00971928 - time (sec): 10.59 - samples/sec: 1646.35 - lr: 0.000004 - momentum: 0.000000
|
466 |
+
2023-10-23 19:10:48,168 epoch 9 - iter 192/242 - loss 0.01008407 - time (sec): 12.11 - samples/sec: 1646.11 - lr: 0.000004 - momentum: 0.000000
|
467 |
+
2023-10-23 19:10:49,679 epoch 9 - iter 216/242 - loss 0.01053302 - time (sec): 13.62 - samples/sec: 1622.77 - lr: 0.000004 - momentum: 0.000000
|
468 |
+
2023-10-23 19:10:51,195 epoch 9 - iter 240/242 - loss 0.00948029 - time (sec): 15.13 - samples/sec: 1628.46 - lr: 0.000003 - momentum: 0.000000
|
469 |
+
2023-10-23 19:10:51,307 ----------------------------------------------------------------------------------------------------
|
470 |
+
2023-10-23 19:10:51,307 EPOCH 9 done: loss 0.0094 - lr: 0.000003
|
471 |
+
2023-10-23 19:10:51,996 DEV : loss 0.20104923844337463 - f1-score (micro avg) 0.8418
|
472 |
+
2023-10-23 19:10:51,999 ----------------------------------------------------------------------------------------------------
|
473 |
+
2023-10-23 19:10:53,575 epoch 10 - iter 24/242 - loss 0.01608682 - time (sec): 1.57 - samples/sec: 1660.56 - lr: 0.000003 - momentum: 0.000000
|
474 |
+
2023-10-23 19:10:55,138 epoch 10 - iter 48/242 - loss 0.01053632 - time (sec): 3.14 - samples/sec: 1642.25 - lr: 0.000003 - momentum: 0.000000
|
475 |
+
2023-10-23 19:10:56,641 epoch 10 - iter 72/242 - loss 0.00703278 - time (sec): 4.64 - samples/sec: 1685.53 - lr: 0.000002 - momentum: 0.000000
|
476 |
+
2023-10-23 19:10:58,153 epoch 10 - iter 96/242 - loss 0.00645811 - time (sec): 6.15 - samples/sec: 1682.84 - lr: 0.000002 - momentum: 0.000000
|
477 |
+
2023-10-23 19:10:59,681 epoch 10 - iter 120/242 - loss 0.00615817 - time (sec): 7.68 - samples/sec: 1673.66 - lr: 0.000002 - momentum: 0.000000
|
478 |
+
2023-10-23 19:11:01,209 epoch 10 - iter 144/242 - loss 0.00528460 - time (sec): 9.21 - samples/sec: 1654.88 - lr: 0.000001 - momentum: 0.000000
|
479 |
+
2023-10-23 19:11:02,673 epoch 10 - iter 168/242 - loss 0.00538711 - time (sec): 10.67 - samples/sec: 1631.70 - lr: 0.000001 - momentum: 0.000000
|
480 |
+
2023-10-23 19:11:04,163 epoch 10 - iter 192/242 - loss 0.00517269 - time (sec): 12.16 - samples/sec: 1631.04 - lr: 0.000001 - momentum: 0.000000
|
481 |
+
2023-10-23 19:11:05,668 epoch 10 - iter 216/242 - loss 0.00576643 - time (sec): 13.67 - samples/sec: 1634.52 - lr: 0.000000 - momentum: 0.000000
|
482 |
+
2023-10-23 19:11:07,154 epoch 10 - iter 240/242 - loss 0.00579968 - time (sec): 15.15 - samples/sec: 1624.90 - lr: 0.000000 - momentum: 0.000000
|
483 |
+
2023-10-23 19:11:07,263 ----------------------------------------------------------------------------------------------------
|
484 |
+
2023-10-23 19:11:07,263 EPOCH 10 done: loss 0.0058 - lr: 0.000000
|
485 |
+
2023-10-23 19:11:07,954 DEV : loss 0.207326278090477 - f1-score (micro avg) 0.8464
|
486 |
+
2023-10-23 19:11:08,620 ----------------------------------------------------------------------------------------------------
|
487 |
+
2023-10-23 19:11:08,621 Loading model from best epoch ...
|
488 |
+
2023-10-23 19:11:10,583 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
|
489 |
+
2023-10-23 19:11:11,448
|
490 |
+
Results:
|
491 |
+
- F-score (micro) 0.8157
|
492 |
+
- F-score (macro) 0.5867
|
493 |
+
- Accuracy 0.7116
|
494 |
+
|
495 |
+
By class:
|
496 |
+
precision recall f1-score support
|
497 |
+
|
498 |
+
pers 0.8592 0.8777 0.8683 139
|
499 |
+
scope 0.8085 0.8837 0.8444 129
|
500 |
+
work 0.6739 0.7750 0.7209 80
|
501 |
+
loc 1.0000 0.3333 0.5000 9
|
502 |
+
date 0.0000 0.0000 0.0000 3
|
503 |
+
|
504 |
+
micro avg 0.7963 0.8361 0.8157 360
|
505 |
+
macro avg 0.6683 0.5740 0.5867 360
|
506 |
+
weighted avg 0.7962 0.8361 0.8106 360
|
507 |
+
|
508 |
+
2023-10-23 19:11:11,448 ----------------------------------------------------------------------------------------------------
|