readme: add initial version of model card (#1)
Browse files- readme: add initial version of model card (b765c70721debb8e1a82e5562bf72d112d068b42)
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- flair
|
6 |
+
- token-classification
|
7 |
+
- sequence-tagger-model
|
8 |
+
base_model: dbmdz/bert-tiny-historic-multilingual-cased
|
9 |
+
widget:
|
10 |
+
- text: Cp . Eur . Phoen . 240 , 1 , αἷμα ddiov φλέγέι .
|
11 |
+
---
|
12 |
+
|
13 |
+
# Fine-tuned Flair Model on AjMC English NER Dataset (HIPE-2022)
|
14 |
+
|
15 |
+
This Flair model was fine-tuned on the
|
16 |
+
[AjMC English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md)
|
17 |
+
NER Dataset using hmBERT Tiny as backbone LM.
|
18 |
+
|
19 |
+
The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics,
|
20 |
+
and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/)
|
21 |
+
project.
|
22 |
+
|
23 |
+
The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`.
|
24 |
+
|
25 |
+
# Results
|
26 |
+
|
27 |
+
We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
|
28 |
+
|
29 |
+
* Batch Sizes: `[4, 8]`
|
30 |
+
* Learning Rates: `[5e-05, 3e-05]`
|
31 |
+
|
32 |
+
And report micro F1-score on development set:
|
33 |
+
|
34 |
+
| Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average |
|
35 |
+
|-------------------|------------------|--------------|--------------|--------------|--------------|-----------------|
|
36 |
+
| `bs4-e10-lr5e-05` | [0.5579][1] | [0.5082][2] | [0.5434][3] | [0.4949][4] | [0.4882][5] | 0.5185 ± 0.0306 |
|
37 |
+
| `bs8-e10-lr5e-05` | [0.5301][6] | [0.468][7] | [0.525][8] | [0.4989][9] | [0.4707][10] | 0.4985 ± 0.0292 |
|
38 |
+
| `bs4-e10-lr3e-05` | [0.4972][11] | [0.427][12] | [0.4745][13] | [0.4394][14] | [0.4249][15] | 0.4526 ± 0.0319 |
|
39 |
+
| `bs8-e10-lr3e-05` | [**0.4402**][16] | [0.3531][17] | [0.4141][18] | [0.3808][19] | [0.4073][20] | 0.3991 ± 0.0333 |
|
40 |
+
|
41 |
+
[1]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
|
42 |
+
[2]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
|
43 |
+
[3]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
|
44 |
+
[4]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
|
45 |
+
[5]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
|
46 |
+
[6]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
|
47 |
+
[7]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
|
48 |
+
[8]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
|
49 |
+
[9]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
|
50 |
+
[10]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
|
51 |
+
[11]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
|
52 |
+
[12]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
|
53 |
+
[13]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
|
54 |
+
[14]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
|
55 |
+
[15]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
|
56 |
+
[16]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
|
57 |
+
[17]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
|
58 |
+
[18]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
|
59 |
+
[19]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
|
60 |
+
[20]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
|
61 |
+
|
62 |
+
The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub.
|
63 |
+
|
64 |
+
More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
|
65 |
+
|
66 |
+
# Acknowledgements
|
67 |
+
|
68 |
+
We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
|
69 |
+
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
|
70 |
+
|
71 |
+
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
|
72 |
+
Many Thanks for providing access to the TPUs ❤️
|