stefan-it's picture
Upload ./training.log with huggingface_hub
1cd0638 verified
2024-03-26 16:13:04,091 ----------------------------------------------------------------------------------------------------
2024-03-26 16:13:04,092 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 16:13:04,092 ----------------------------------------------------------------------------------------------------
2024-03-26 16:13:04,092 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 16:13:04,092 ----------------------------------------------------------------------------------------------------
2024-03-26 16:13:04,092 Train: 758 sentences
2024-03-26 16:13:04,092 (train_with_dev=False, train_with_test=False)
2024-03-26 16:13:04,092 ----------------------------------------------------------------------------------------------------
2024-03-26 16:13:04,092 Training Params:
2024-03-26 16:13:04,092 - learning_rate: "3e-05"
2024-03-26 16:13:04,092 - mini_batch_size: "8"
2024-03-26 16:13:04,092 - max_epochs: "10"
2024-03-26 16:13:04,092 - shuffle: "True"
2024-03-26 16:13:04,092 ----------------------------------------------------------------------------------------------------
2024-03-26 16:13:04,092 Plugins:
2024-03-26 16:13:04,092 - TensorboardLogger
2024-03-26 16:13:04,092 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 16:13:04,092 ----------------------------------------------------------------------------------------------------
2024-03-26 16:13:04,092 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 16:13:04,092 - metric: "('micro avg', 'f1-score')"
2024-03-26 16:13:04,092 ----------------------------------------------------------------------------------------------------
2024-03-26 16:13:04,092 Computation:
2024-03-26 16:13:04,092 - compute on device: cuda:0
2024-03-26 16:13:04,092 - embedding storage: none
2024-03-26 16:13:04,092 ----------------------------------------------------------------------------------------------------
2024-03-26 16:13:04,092 Model training base path: "flair-co-funer-german_dbmdz_bert_base-bs8-e10-lr3e-05-4"
2024-03-26 16:13:04,092 ----------------------------------------------------------------------------------------------------
2024-03-26 16:13:04,092 ----------------------------------------------------------------------------------------------------
2024-03-26 16:13:04,092 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 16:13:05,441 epoch 1 - iter 9/95 - loss 3.01892317 - time (sec): 1.35 - samples/sec: 2152.42 - lr: 0.000003 - momentum: 0.000000
2024-03-26 16:13:06,820 epoch 1 - iter 18/95 - loss 2.94981305 - time (sec): 2.73 - samples/sec: 2022.04 - lr: 0.000005 - momentum: 0.000000
2024-03-26 16:13:08,432 epoch 1 - iter 27/95 - loss 2.78986887 - time (sec): 4.34 - samples/sec: 1976.26 - lr: 0.000008 - momentum: 0.000000
2024-03-26 16:13:10,392 epoch 1 - iter 36/95 - loss 2.58386486 - time (sec): 6.30 - samples/sec: 1895.02 - lr: 0.000011 - momentum: 0.000000
2024-03-26 16:13:12,239 epoch 1 - iter 45/95 - loss 2.39924465 - time (sec): 8.15 - samples/sec: 1914.24 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:13:14,452 epoch 1 - iter 54/95 - loss 2.24473941 - time (sec): 10.36 - samples/sec: 1848.24 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:13:16,455 epoch 1 - iter 63/95 - loss 2.10652823 - time (sec): 12.36 - samples/sec: 1828.33 - lr: 0.000020 - momentum: 0.000000
2024-03-26 16:13:17,425 epoch 1 - iter 72/95 - loss 2.02587073 - time (sec): 13.33 - samples/sec: 1873.71 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:13:19,697 epoch 1 - iter 81/95 - loss 1.88802215 - time (sec): 15.60 - samples/sec: 1820.33 - lr: 0.000025 - momentum: 0.000000
2024-03-26 16:13:21,027 epoch 1 - iter 90/95 - loss 1.75243499 - time (sec): 16.93 - samples/sec: 1887.35 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:13:22,289 ----------------------------------------------------------------------------------------------------
2024-03-26 16:13:22,290 EPOCH 1 done: loss 1.6837 - lr: 0.000028
2024-03-26 16:13:23,178 DEV : loss 0.5122107267379761 - f1-score (micro avg) 0.6199
2024-03-26 16:13:23,180 saving best model
2024-03-26 16:13:23,441 ----------------------------------------------------------------------------------------------------
2024-03-26 16:13:25,018 epoch 2 - iter 9/95 - loss 0.64396303 - time (sec): 1.58 - samples/sec: 1827.81 - lr: 0.000030 - momentum: 0.000000
2024-03-26 16:13:26,643 epoch 2 - iter 18/95 - loss 0.55024335 - time (sec): 3.20 - samples/sec: 1930.56 - lr: 0.000029 - momentum: 0.000000
2024-03-26 16:13:28,415 epoch 2 - iter 27/95 - loss 0.49926632 - time (sec): 4.97 - samples/sec: 1901.22 - lr: 0.000029 - momentum: 0.000000
2024-03-26 16:13:30,773 epoch 2 - iter 36/95 - loss 0.43995028 - time (sec): 7.33 - samples/sec: 1779.64 - lr: 0.000029 - momentum: 0.000000
2024-03-26 16:13:32,718 epoch 2 - iter 45/95 - loss 0.42382182 - time (sec): 9.28 - samples/sec: 1778.63 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:13:34,462 epoch 2 - iter 54/95 - loss 0.43455854 - time (sec): 11.02 - samples/sec: 1799.70 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:13:36,855 epoch 2 - iter 63/95 - loss 0.41135255 - time (sec): 13.41 - samples/sec: 1782.58 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:13:38,662 epoch 2 - iter 72/95 - loss 0.41076175 - time (sec): 15.22 - samples/sec: 1776.73 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:13:40,826 epoch 2 - iter 81/95 - loss 0.40019733 - time (sec): 17.38 - samples/sec: 1759.78 - lr: 0.000027 - momentum: 0.000000
2024-03-26 16:13:42,109 epoch 2 - iter 90/95 - loss 0.39608461 - time (sec): 18.67 - samples/sec: 1784.75 - lr: 0.000027 - momentum: 0.000000
2024-03-26 16:13:42,557 ----------------------------------------------------------------------------------------------------
2024-03-26 16:13:42,557 EPOCH 2 done: loss 0.3914 - lr: 0.000027
2024-03-26 16:13:43,466 DEV : loss 0.3047449290752411 - f1-score (micro avg) 0.8109
2024-03-26 16:13:43,467 saving best model
2024-03-26 16:13:43,903 ----------------------------------------------------------------------------------------------------
2024-03-26 16:13:45,404 epoch 3 - iter 9/95 - loss 0.23934414 - time (sec): 1.50 - samples/sec: 1767.18 - lr: 0.000026 - momentum: 0.000000
2024-03-26 16:13:47,113 epoch 3 - iter 18/95 - loss 0.21659015 - time (sec): 3.21 - samples/sec: 1742.16 - lr: 0.000026 - momentum: 0.000000
2024-03-26 16:13:48,946 epoch 3 - iter 27/95 - loss 0.21961110 - time (sec): 5.04 - samples/sec: 1766.65 - lr: 0.000026 - momentum: 0.000000
2024-03-26 16:13:50,724 epoch 3 - iter 36/95 - loss 0.22376893 - time (sec): 6.82 - samples/sec: 1770.25 - lr: 0.000025 - momentum: 0.000000
2024-03-26 16:13:52,726 epoch 3 - iter 45/95 - loss 0.22130363 - time (sec): 8.82 - samples/sec: 1789.86 - lr: 0.000025 - momentum: 0.000000
2024-03-26 16:13:54,955 epoch 3 - iter 54/95 - loss 0.21592911 - time (sec): 11.05 - samples/sec: 1752.80 - lr: 0.000025 - momentum: 0.000000
2024-03-26 16:13:56,657 epoch 3 - iter 63/95 - loss 0.20957384 - time (sec): 12.75 - samples/sec: 1754.24 - lr: 0.000025 - momentum: 0.000000
2024-03-26 16:13:58,612 epoch 3 - iter 72/95 - loss 0.20499047 - time (sec): 14.71 - samples/sec: 1760.18 - lr: 0.000024 - momentum: 0.000000
2024-03-26 16:14:00,581 epoch 3 - iter 81/95 - loss 0.21084290 - time (sec): 16.68 - samples/sec: 1775.97 - lr: 0.000024 - momentum: 0.000000
2024-03-26 16:14:02,808 epoch 3 - iter 90/95 - loss 0.20345167 - time (sec): 18.90 - samples/sec: 1754.34 - lr: 0.000024 - momentum: 0.000000
2024-03-26 16:14:03,421 ----------------------------------------------------------------------------------------------------
2024-03-26 16:14:03,421 EPOCH 3 done: loss 0.2055 - lr: 0.000024
2024-03-26 16:14:04,337 DEV : loss 0.21783055365085602 - f1-score (micro avg) 0.8673
2024-03-26 16:14:04,339 saving best model
2024-03-26 16:14:04,801 ----------------------------------------------------------------------------------------------------
2024-03-26 16:14:07,176 epoch 4 - iter 9/95 - loss 0.07517827 - time (sec): 2.38 - samples/sec: 1665.20 - lr: 0.000023 - momentum: 0.000000
2024-03-26 16:14:08,341 epoch 4 - iter 18/95 - loss 0.10000483 - time (sec): 3.54 - samples/sec: 1807.80 - lr: 0.000023 - momentum: 0.000000
2024-03-26 16:14:10,456 epoch 4 - iter 27/95 - loss 0.12477688 - time (sec): 5.66 - samples/sec: 1838.82 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:14:11,938 epoch 4 - iter 36/95 - loss 0.12845343 - time (sec): 7.14 - samples/sec: 1869.30 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:14:13,235 epoch 4 - iter 45/95 - loss 0.12810894 - time (sec): 8.43 - samples/sec: 1902.63 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:14:15,282 epoch 4 - iter 54/95 - loss 0.12646511 - time (sec): 10.48 - samples/sec: 1846.77 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:14:17,528 epoch 4 - iter 63/95 - loss 0.13973987 - time (sec): 12.73 - samples/sec: 1819.20 - lr: 0.000021 - momentum: 0.000000
2024-03-26 16:14:18,968 epoch 4 - iter 72/95 - loss 0.13882561 - time (sec): 14.17 - samples/sec: 1854.83 - lr: 0.000021 - momentum: 0.000000
2024-03-26 16:14:20,553 epoch 4 - iter 81/95 - loss 0.13686782 - time (sec): 15.75 - samples/sec: 1885.58 - lr: 0.000021 - momentum: 0.000000
2024-03-26 16:14:22,160 epoch 4 - iter 90/95 - loss 0.13516261 - time (sec): 17.36 - samples/sec: 1912.90 - lr: 0.000020 - momentum: 0.000000
2024-03-26 16:14:22,783 ----------------------------------------------------------------------------------------------------
2024-03-26 16:14:22,783 EPOCH 4 done: loss 0.1357 - lr: 0.000020
2024-03-26 16:14:23,693 DEV : loss 0.19859355688095093 - f1-score (micro avg) 0.9001
2024-03-26 16:14:23,694 saving best model
2024-03-26 16:14:24,137 ----------------------------------------------------------------------------------------------------
2024-03-26 16:14:25,337 epoch 5 - iter 9/95 - loss 0.15499173 - time (sec): 1.20 - samples/sec: 2465.78 - lr: 0.000020 - momentum: 0.000000
2024-03-26 16:14:26,763 epoch 5 - iter 18/95 - loss 0.12626124 - time (sec): 2.63 - samples/sec: 2220.05 - lr: 0.000019 - momentum: 0.000000
2024-03-26 16:14:28,731 epoch 5 - iter 27/95 - loss 0.11156913 - time (sec): 4.59 - samples/sec: 2001.98 - lr: 0.000019 - momentum: 0.000000
2024-03-26 16:14:31,129 epoch 5 - iter 36/95 - loss 0.10681209 - time (sec): 6.99 - samples/sec: 1816.67 - lr: 0.000019 - momentum: 0.000000
2024-03-26 16:14:32,338 epoch 5 - iter 45/95 - loss 0.11337595 - time (sec): 8.20 - samples/sec: 1862.46 - lr: 0.000019 - momentum: 0.000000
2024-03-26 16:14:34,180 epoch 5 - iter 54/95 - loss 0.10710186 - time (sec): 10.04 - samples/sec: 1906.04 - lr: 0.000018 - momentum: 0.000000
2024-03-26 16:14:36,215 epoch 5 - iter 63/95 - loss 0.10095178 - time (sec): 12.08 - samples/sec: 1892.23 - lr: 0.000018 - momentum: 0.000000
2024-03-26 16:14:37,462 epoch 5 - iter 72/95 - loss 0.09984606 - time (sec): 13.32 - samples/sec: 1921.32 - lr: 0.000018 - momentum: 0.000000
2024-03-26 16:14:39,985 epoch 5 - iter 81/95 - loss 0.09463996 - time (sec): 15.85 - samples/sec: 1853.36 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:14:42,006 epoch 5 - iter 90/95 - loss 0.09475277 - time (sec): 17.87 - samples/sec: 1832.33 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:14:42,871 ----------------------------------------------------------------------------------------------------
2024-03-26 16:14:42,871 EPOCH 5 done: loss 0.0957 - lr: 0.000017
2024-03-26 16:14:43,890 DEV : loss 0.17372848093509674 - f1-score (micro avg) 0.8924
2024-03-26 16:14:43,891 ----------------------------------------------------------------------------------------------------
2024-03-26 16:14:45,553 epoch 6 - iter 9/95 - loss 0.11813969 - time (sec): 1.66 - samples/sec: 1996.15 - lr: 0.000016 - momentum: 0.000000
2024-03-26 16:14:47,611 epoch 6 - iter 18/95 - loss 0.08450061 - time (sec): 3.72 - samples/sec: 1821.92 - lr: 0.000016 - momentum: 0.000000
2024-03-26 16:14:49,052 epoch 6 - iter 27/95 - loss 0.08305533 - time (sec): 5.16 - samples/sec: 1851.53 - lr: 0.000016 - momentum: 0.000000
2024-03-26 16:14:51,388 epoch 6 - iter 36/95 - loss 0.06803915 - time (sec): 7.50 - samples/sec: 1713.00 - lr: 0.000016 - momentum: 0.000000
2024-03-26 16:14:53,168 epoch 6 - iter 45/95 - loss 0.06604557 - time (sec): 9.28 - samples/sec: 1734.19 - lr: 0.000015 - momentum: 0.000000
2024-03-26 16:14:55,645 epoch 6 - iter 54/95 - loss 0.07294541 - time (sec): 11.75 - samples/sec: 1712.88 - lr: 0.000015 - momentum: 0.000000
2024-03-26 16:14:57,157 epoch 6 - iter 63/95 - loss 0.07352466 - time (sec): 13.27 - samples/sec: 1730.50 - lr: 0.000015 - momentum: 0.000000
2024-03-26 16:14:58,699 epoch 6 - iter 72/95 - loss 0.07270595 - time (sec): 14.81 - samples/sec: 1751.86 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:15:00,785 epoch 6 - iter 81/95 - loss 0.07352203 - time (sec): 16.89 - samples/sec: 1745.08 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:15:01,968 epoch 6 - iter 90/95 - loss 0.07693810 - time (sec): 18.08 - samples/sec: 1789.28 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:15:03,303 ----------------------------------------------------------------------------------------------------
2024-03-26 16:15:03,303 EPOCH 6 done: loss 0.0749 - lr: 0.000014
2024-03-26 16:15:04,234 DEV : loss 0.17936821281909943 - f1-score (micro avg) 0.9228
2024-03-26 16:15:04,236 saving best model
2024-03-26 16:15:04,682 ----------------------------------------------------------------------------------------------------
2024-03-26 16:15:06,057 epoch 7 - iter 9/95 - loss 0.06958458 - time (sec): 1.37 - samples/sec: 2311.25 - lr: 0.000013 - momentum: 0.000000
2024-03-26 16:15:08,176 epoch 7 - iter 18/95 - loss 0.05784086 - time (sec): 3.49 - samples/sec: 1931.12 - lr: 0.000013 - momentum: 0.000000
2024-03-26 16:15:10,073 epoch 7 - iter 27/95 - loss 0.06236455 - time (sec): 5.39 - samples/sec: 1813.90 - lr: 0.000013 - momentum: 0.000000
2024-03-26 16:15:11,375 epoch 7 - iter 36/95 - loss 0.06012303 - time (sec): 6.69 - samples/sec: 1869.77 - lr: 0.000012 - momentum: 0.000000
2024-03-26 16:15:13,075 epoch 7 - iter 45/95 - loss 0.05742602 - time (sec): 8.39 - samples/sec: 1875.36 - lr: 0.000012 - momentum: 0.000000
2024-03-26 16:15:15,276 epoch 7 - iter 54/95 - loss 0.05375127 - time (sec): 10.59 - samples/sec: 1849.97 - lr: 0.000012 - momentum: 0.000000
2024-03-26 16:15:17,316 epoch 7 - iter 63/95 - loss 0.05596495 - time (sec): 12.63 - samples/sec: 1802.49 - lr: 0.000011 - momentum: 0.000000
2024-03-26 16:15:19,447 epoch 7 - iter 72/95 - loss 0.05433191 - time (sec): 14.76 - samples/sec: 1777.64 - lr: 0.000011 - momentum: 0.000000
2024-03-26 16:15:20,963 epoch 7 - iter 81/95 - loss 0.05821444 - time (sec): 16.28 - samples/sec: 1784.00 - lr: 0.000011 - momentum: 0.000000
2024-03-26 16:15:22,840 epoch 7 - iter 90/95 - loss 0.06164903 - time (sec): 18.15 - samples/sec: 1811.68 - lr: 0.000010 - momentum: 0.000000
2024-03-26 16:15:23,531 ----------------------------------------------------------------------------------------------------
2024-03-26 16:15:23,531 EPOCH 7 done: loss 0.0607 - lr: 0.000010
2024-03-26 16:15:24,452 DEV : loss 0.17456422746181488 - f1-score (micro avg) 0.931
2024-03-26 16:15:24,455 saving best model
2024-03-26 16:15:24,925 ----------------------------------------------------------------------------------------------------
2024-03-26 16:15:26,576 epoch 8 - iter 9/95 - loss 0.03164527 - time (sec): 1.65 - samples/sec: 1783.01 - lr: 0.000010 - momentum: 0.000000
2024-03-26 16:15:28,709 epoch 8 - iter 18/95 - loss 0.03273288 - time (sec): 3.78 - samples/sec: 1752.09 - lr: 0.000010 - momentum: 0.000000
2024-03-26 16:15:30,558 epoch 8 - iter 27/95 - loss 0.04257132 - time (sec): 5.63 - samples/sec: 1723.16 - lr: 0.000009 - momentum: 0.000000
2024-03-26 16:15:32,534 epoch 8 - iter 36/95 - loss 0.04208931 - time (sec): 7.61 - samples/sec: 1731.08 - lr: 0.000009 - momentum: 0.000000
2024-03-26 16:15:33,565 epoch 8 - iter 45/95 - loss 0.05163225 - time (sec): 8.64 - samples/sec: 1815.79 - lr: 0.000009 - momentum: 0.000000
2024-03-26 16:15:35,509 epoch 8 - iter 54/95 - loss 0.05431701 - time (sec): 10.58 - samples/sec: 1804.85 - lr: 0.000008 - momentum: 0.000000
2024-03-26 16:15:37,748 epoch 8 - iter 63/95 - loss 0.05448027 - time (sec): 12.82 - samples/sec: 1787.38 - lr: 0.000008 - momentum: 0.000000
2024-03-26 16:15:39,958 epoch 8 - iter 72/95 - loss 0.05350915 - time (sec): 15.03 - samples/sec: 1778.34 - lr: 0.000008 - momentum: 0.000000
2024-03-26 16:15:41,669 epoch 8 - iter 81/95 - loss 0.05217506 - time (sec): 16.74 - samples/sec: 1782.50 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:15:43,594 epoch 8 - iter 90/95 - loss 0.04976103 - time (sec): 18.67 - samples/sec: 1778.45 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:15:44,189 ----------------------------------------------------------------------------------------------------
2024-03-26 16:15:44,190 EPOCH 8 done: loss 0.0505 - lr: 0.000007
2024-03-26 16:15:45,127 DEV : loss 0.18435950577259064 - f1-score (micro avg) 0.9326
2024-03-26 16:15:45,128 saving best model
2024-03-26 16:15:45,601 ----------------------------------------------------------------------------------------------------
2024-03-26 16:15:47,129 epoch 9 - iter 9/95 - loss 0.04389027 - time (sec): 1.53 - samples/sec: 2082.70 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:15:49,410 epoch 9 - iter 18/95 - loss 0.03620731 - time (sec): 3.81 - samples/sec: 1788.41 - lr: 0.000006 - momentum: 0.000000
2024-03-26 16:15:50,997 epoch 9 - iter 27/95 - loss 0.02956550 - time (sec): 5.40 - samples/sec: 1806.40 - lr: 0.000006 - momentum: 0.000000
2024-03-26 16:15:53,280 epoch 9 - iter 36/95 - loss 0.03571516 - time (sec): 7.68 - samples/sec: 1766.87 - lr: 0.000006 - momentum: 0.000000
2024-03-26 16:15:55,165 epoch 9 - iter 45/95 - loss 0.03668108 - time (sec): 9.56 - samples/sec: 1739.74 - lr: 0.000005 - momentum: 0.000000
2024-03-26 16:15:56,535 epoch 9 - iter 54/95 - loss 0.03858777 - time (sec): 10.93 - samples/sec: 1784.77 - lr: 0.000005 - momentum: 0.000000
2024-03-26 16:15:58,590 epoch 9 - iter 63/95 - loss 0.03601310 - time (sec): 12.99 - samples/sec: 1765.15 - lr: 0.000005 - momentum: 0.000000
2024-03-26 16:15:59,803 epoch 9 - iter 72/95 - loss 0.04076328 - time (sec): 14.20 - samples/sec: 1800.00 - lr: 0.000004 - momentum: 0.000000
2024-03-26 16:16:02,536 epoch 9 - iter 81/95 - loss 0.03883671 - time (sec): 16.93 - samples/sec: 1753.65 - lr: 0.000004 - momentum: 0.000000
2024-03-26 16:16:04,161 epoch 9 - iter 90/95 - loss 0.03642009 - time (sec): 18.56 - samples/sec: 1775.06 - lr: 0.000004 - momentum: 0.000000
2024-03-26 16:16:04,819 ----------------------------------------------------------------------------------------------------
2024-03-26 16:16:04,820 EPOCH 9 done: loss 0.0392 - lr: 0.000004
2024-03-26 16:16:05,747 DEV : loss 0.18579983711242676 - f1-score (micro avg) 0.9379
2024-03-26 16:16:05,749 saving best model
2024-03-26 16:16:06,220 ----------------------------------------------------------------------------------------------------
2024-03-26 16:16:08,063 epoch 10 - iter 9/95 - loss 0.03895271 - time (sec): 1.84 - samples/sec: 1684.25 - lr: 0.000003 - momentum: 0.000000
2024-03-26 16:16:10,318 epoch 10 - iter 18/95 - loss 0.03731677 - time (sec): 4.10 - samples/sec: 1627.21 - lr: 0.000003 - momentum: 0.000000
2024-03-26 16:16:11,737 epoch 10 - iter 27/95 - loss 0.03325541 - time (sec): 5.51 - samples/sec: 1778.77 - lr: 0.000003 - momentum: 0.000000
2024-03-26 16:16:13,455 epoch 10 - iter 36/95 - loss 0.03072498 - time (sec): 7.23 - samples/sec: 1824.40 - lr: 0.000002 - momentum: 0.000000
2024-03-26 16:16:14,871 epoch 10 - iter 45/95 - loss 0.03067039 - time (sec): 8.65 - samples/sec: 1856.85 - lr: 0.000002 - momentum: 0.000000
2024-03-26 16:16:15,893 epoch 10 - iter 54/95 - loss 0.02972160 - time (sec): 9.67 - samples/sec: 1929.57 - lr: 0.000002 - momentum: 0.000000
2024-03-26 16:16:17,698 epoch 10 - iter 63/95 - loss 0.02849617 - time (sec): 11.48 - samples/sec: 1904.78 - lr: 0.000001 - momentum: 0.000000
2024-03-26 16:16:19,950 epoch 10 - iter 72/95 - loss 0.03464330 - time (sec): 13.73 - samples/sec: 1857.14 - lr: 0.000001 - momentum: 0.000000
2024-03-26 16:16:21,578 epoch 10 - iter 81/95 - loss 0.03819664 - time (sec): 15.36 - samples/sec: 1850.26 - lr: 0.000001 - momentum: 0.000000
2024-03-26 16:16:23,897 epoch 10 - iter 90/95 - loss 0.03582206 - time (sec): 17.68 - samples/sec: 1838.69 - lr: 0.000000 - momentum: 0.000000
2024-03-26 16:16:25,150 ----------------------------------------------------------------------------------------------------
2024-03-26 16:16:25,150 EPOCH 10 done: loss 0.0380 - lr: 0.000000
2024-03-26 16:16:26,095 DEV : loss 0.19086487591266632 - f1-score (micro avg) 0.9417
2024-03-26 16:16:26,097 saving best model
2024-03-26 16:16:26,869 ----------------------------------------------------------------------------------------------------
2024-03-26 16:16:26,869 Loading model from best epoch ...
2024-03-26 16:16:27,761 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 16:16:28,529
Results:
- F-score (micro) 0.9067
- F-score (macro) 0.6885
- Accuracy 0.8329
By class:
precision recall f1-score support
Unternehmen 0.8931 0.8797 0.8864 266
Auslagerung 0.8833 0.9116 0.8972 249
Ort 0.9565 0.9851 0.9706 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8998 0.9137 0.9067 649
macro avg 0.6832 0.6941 0.6885 649
weighted avg 0.9024 0.9137 0.9079 649
2024-03-26 16:16:28,529 ----------------------------------------------------------------------------------------------------