Upload ./training.log with huggingface_hub
Browse files- training.log +266 -0
training.log
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-03-26 10:59:50,722 ----------------------------------------------------------------------------------------------------
|
2 |
+
2024-03-26 10:59:50,722 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(30001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2024-03-26 10:59:50,722 ----------------------------------------------------------------------------------------------------
|
51 |
+
2024-03-26 10:59:50,722 Corpus: 758 train + 94 dev + 96 test sentences
|
52 |
+
2024-03-26 10:59:50,722 ----------------------------------------------------------------------------------------------------
|
53 |
+
2024-03-26 10:59:50,722 Train: 758 sentences
|
54 |
+
2024-03-26 10:59:50,722 (train_with_dev=False, train_with_test=False)
|
55 |
+
2024-03-26 10:59:50,722 ----------------------------------------------------------------------------------------------------
|
56 |
+
2024-03-26 10:59:50,722 Training Params:
|
57 |
+
2024-03-26 10:59:50,722 - learning_rate: "5e-05"
|
58 |
+
2024-03-26 10:59:50,722 - mini_batch_size: "16"
|
59 |
+
2024-03-26 10:59:50,722 - max_epochs: "10"
|
60 |
+
2024-03-26 10:59:50,722 - shuffle: "True"
|
61 |
+
2024-03-26 10:59:50,722 ----------------------------------------------------------------------------------------------------
|
62 |
+
2024-03-26 10:59:50,722 Plugins:
|
63 |
+
2024-03-26 10:59:50,722 - TensorboardLogger
|
64 |
+
2024-03-26 10:59:50,722 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2024-03-26 10:59:50,723 ----------------------------------------------------------------------------------------------------
|
66 |
+
2024-03-26 10:59:50,723 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2024-03-26 10:59:50,723 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2024-03-26 10:59:50,723 ----------------------------------------------------------------------------------------------------
|
69 |
+
2024-03-26 10:59:50,723 Computation:
|
70 |
+
2024-03-26 10:59:50,723 - compute on device: cuda:0
|
71 |
+
2024-03-26 10:59:50,723 - embedding storage: none
|
72 |
+
2024-03-26 10:59:50,723 ----------------------------------------------------------------------------------------------------
|
73 |
+
2024-03-26 10:59:50,723 Model training base path: "flair-co-funer-german_bert_base-bs16-e10-lr5e-05-1"
|
74 |
+
2024-03-26 10:59:50,723 ----------------------------------------------------------------------------------------------------
|
75 |
+
2024-03-26 10:59:50,723 ----------------------------------------------------------------------------------------------------
|
76 |
+
2024-03-26 10:59:50,723 Logging anything other than scalars to TensorBoard is currently not supported.
|
77 |
+
2024-03-26 10:59:52,827 epoch 1 - iter 4/48 - loss 3.17719565 - time (sec): 2.10 - samples/sec: 1290.23 - lr: 0.000003 - momentum: 0.000000
|
78 |
+
2024-03-26 10:59:54,174 epoch 1 - iter 8/48 - loss 3.22940502 - time (sec): 3.45 - samples/sec: 1561.49 - lr: 0.000007 - momentum: 0.000000
|
79 |
+
2024-03-26 10:59:57,198 epoch 1 - iter 12/48 - loss 3.11554189 - time (sec): 6.48 - samples/sec: 1343.86 - lr: 0.000011 - momentum: 0.000000
|
80 |
+
2024-03-26 11:00:00,546 epoch 1 - iter 16/48 - loss 2.96962598 - time (sec): 9.82 - samples/sec: 1241.33 - lr: 0.000016 - momentum: 0.000000
|
81 |
+
2024-03-26 11:00:03,131 epoch 1 - iter 20/48 - loss 2.80109533 - time (sec): 12.41 - samples/sec: 1239.73 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2024-03-26 11:00:04,908 epoch 1 - iter 24/48 - loss 2.64646526 - time (sec): 14.18 - samples/sec: 1285.69 - lr: 0.000024 - momentum: 0.000000
|
83 |
+
2024-03-26 11:00:06,561 epoch 1 - iter 28/48 - loss 2.52516425 - time (sec): 15.84 - samples/sec: 1307.09 - lr: 0.000028 - momentum: 0.000000
|
84 |
+
2024-03-26 11:00:08,744 epoch 1 - iter 32/48 - loss 2.41186996 - time (sec): 18.02 - samples/sec: 1311.61 - lr: 0.000032 - momentum: 0.000000
|
85 |
+
2024-03-26 11:00:09,739 epoch 1 - iter 36/48 - loss 2.32081588 - time (sec): 19.02 - samples/sec: 1369.83 - lr: 0.000036 - momentum: 0.000000
|
86 |
+
2024-03-26 11:00:11,786 epoch 1 - iter 40/48 - loss 2.21383836 - time (sec): 21.06 - samples/sec: 1382.32 - lr: 0.000041 - momentum: 0.000000
|
87 |
+
2024-03-26 11:00:13,867 epoch 1 - iter 44/48 - loss 2.11699490 - time (sec): 23.14 - samples/sec: 1368.86 - lr: 0.000045 - momentum: 0.000000
|
88 |
+
2024-03-26 11:00:15,419 epoch 1 - iter 48/48 - loss 2.01053611 - time (sec): 24.70 - samples/sec: 1395.88 - lr: 0.000049 - momentum: 0.000000
|
89 |
+
2024-03-26 11:00:15,419 ----------------------------------------------------------------------------------------------------
|
90 |
+
2024-03-26 11:00:15,419 EPOCH 1 done: loss 2.0105 - lr: 0.000049
|
91 |
+
2024-03-26 11:00:16,279 DEV : loss 0.6016283631324768 - f1-score (micro avg) 0.5787
|
92 |
+
2024-03-26 11:00:16,281 saving best model
|
93 |
+
2024-03-26 11:00:16,555 ----------------------------------------------------------------------------------------------------
|
94 |
+
2024-03-26 11:00:19,245 epoch 2 - iter 4/48 - loss 0.70959951 - time (sec): 2.69 - samples/sec: 1153.63 - lr: 0.000050 - momentum: 0.000000
|
95 |
+
2024-03-26 11:00:21,418 epoch 2 - iter 8/48 - loss 0.70407287 - time (sec): 4.86 - samples/sec: 1360.00 - lr: 0.000049 - momentum: 0.000000
|
96 |
+
2024-03-26 11:00:23,773 epoch 2 - iter 12/48 - loss 0.65597292 - time (sec): 7.22 - samples/sec: 1282.88 - lr: 0.000049 - momentum: 0.000000
|
97 |
+
2024-03-26 11:00:25,873 epoch 2 - iter 16/48 - loss 0.61448768 - time (sec): 9.32 - samples/sec: 1278.96 - lr: 0.000048 - momentum: 0.000000
|
98 |
+
2024-03-26 11:00:28,044 epoch 2 - iter 20/48 - loss 0.57629162 - time (sec): 11.49 - samples/sec: 1305.28 - lr: 0.000048 - momentum: 0.000000
|
99 |
+
2024-03-26 11:00:31,219 epoch 2 - iter 24/48 - loss 0.52019540 - time (sec): 14.66 - samples/sec: 1261.90 - lr: 0.000047 - momentum: 0.000000
|
100 |
+
2024-03-26 11:00:33,666 epoch 2 - iter 28/48 - loss 0.50568930 - time (sec): 17.11 - samples/sec: 1258.99 - lr: 0.000047 - momentum: 0.000000
|
101 |
+
2024-03-26 11:00:35,456 epoch 2 - iter 32/48 - loss 0.48837358 - time (sec): 18.90 - samples/sec: 1276.55 - lr: 0.000046 - momentum: 0.000000
|
102 |
+
2024-03-26 11:00:36,527 epoch 2 - iter 36/48 - loss 0.47541041 - time (sec): 19.97 - samples/sec: 1324.58 - lr: 0.000046 - momentum: 0.000000
|
103 |
+
2024-03-26 11:00:38,421 epoch 2 - iter 40/48 - loss 0.46034741 - time (sec): 21.87 - samples/sec: 1344.51 - lr: 0.000046 - momentum: 0.000000
|
104 |
+
2024-03-26 11:00:40,494 epoch 2 - iter 44/48 - loss 0.45159252 - time (sec): 23.94 - samples/sec: 1341.26 - lr: 0.000045 - momentum: 0.000000
|
105 |
+
2024-03-26 11:00:41,950 epoch 2 - iter 48/48 - loss 0.44143919 - time (sec): 25.39 - samples/sec: 1357.48 - lr: 0.000045 - momentum: 0.000000
|
106 |
+
2024-03-26 11:00:41,950 ----------------------------------------------------------------------------------------------------
|
107 |
+
2024-03-26 11:00:41,950 EPOCH 2 done: loss 0.4414 - lr: 0.000045
|
108 |
+
2024-03-26 11:00:42,973 DEV : loss 0.3147665560245514 - f1-score (micro avg) 0.8072
|
109 |
+
2024-03-26 11:00:42,974 saving best model
|
110 |
+
2024-03-26 11:00:43,402 ----------------------------------------------------------------------------------------------------
|
111 |
+
2024-03-26 11:00:45,991 epoch 3 - iter 4/48 - loss 0.28698034 - time (sec): 2.59 - samples/sec: 1179.06 - lr: 0.000044 - momentum: 0.000000
|
112 |
+
2024-03-26 11:00:47,895 epoch 3 - iter 8/48 - loss 0.25658164 - time (sec): 4.49 - samples/sec: 1305.97 - lr: 0.000044 - momentum: 0.000000
|
113 |
+
2024-03-26 11:00:49,761 epoch 3 - iter 12/48 - loss 0.26858709 - time (sec): 6.36 - samples/sec: 1381.81 - lr: 0.000043 - momentum: 0.000000
|
114 |
+
2024-03-26 11:00:52,180 epoch 3 - iter 16/48 - loss 0.24605106 - time (sec): 8.78 - samples/sec: 1391.39 - lr: 0.000043 - momentum: 0.000000
|
115 |
+
2024-03-26 11:00:53,687 epoch 3 - iter 20/48 - loss 0.25301403 - time (sec): 10.29 - samples/sec: 1438.66 - lr: 0.000042 - momentum: 0.000000
|
116 |
+
2024-03-26 11:00:56,688 epoch 3 - iter 24/48 - loss 0.24057070 - time (sec): 13.29 - samples/sec: 1423.43 - lr: 0.000042 - momentum: 0.000000
|
117 |
+
2024-03-26 11:00:57,456 epoch 3 - iter 28/48 - loss 0.22678079 - time (sec): 14.05 - samples/sec: 1497.16 - lr: 0.000041 - momentum: 0.000000
|
118 |
+
2024-03-26 11:01:00,172 epoch 3 - iter 32/48 - loss 0.22006429 - time (sec): 16.77 - samples/sec: 1432.64 - lr: 0.000041 - momentum: 0.000000
|
119 |
+
2024-03-26 11:01:02,238 epoch 3 - iter 36/48 - loss 0.20958441 - time (sec): 18.84 - samples/sec: 1425.88 - lr: 0.000040 - momentum: 0.000000
|
120 |
+
2024-03-26 11:01:04,210 epoch 3 - iter 40/48 - loss 0.20985973 - time (sec): 20.81 - samples/sec: 1414.06 - lr: 0.000040 - momentum: 0.000000
|
121 |
+
2024-03-26 11:01:06,442 epoch 3 - iter 44/48 - loss 0.20453707 - time (sec): 23.04 - samples/sec: 1415.64 - lr: 0.000040 - momentum: 0.000000
|
122 |
+
2024-03-26 11:01:07,725 epoch 3 - iter 48/48 - loss 0.20307138 - time (sec): 24.32 - samples/sec: 1417.29 - lr: 0.000039 - momentum: 0.000000
|
123 |
+
2024-03-26 11:01:07,725 ----------------------------------------------------------------------------------------------------
|
124 |
+
2024-03-26 11:01:07,725 EPOCH 3 done: loss 0.2031 - lr: 0.000039
|
125 |
+
2024-03-26 11:01:08,671 DEV : loss 0.25678685307502747 - f1-score (micro avg) 0.8519
|
126 |
+
2024-03-26 11:01:08,672 saving best model
|
127 |
+
2024-03-26 11:01:09,109 ----------------------------------------------------------------------------------------------------
|
128 |
+
2024-03-26 11:01:10,611 epoch 4 - iter 4/48 - loss 0.12080968 - time (sec): 1.50 - samples/sec: 1816.16 - lr: 0.000039 - momentum: 0.000000
|
129 |
+
2024-03-26 11:01:13,125 epoch 4 - iter 8/48 - loss 0.15034122 - time (sec): 4.01 - samples/sec: 1429.16 - lr: 0.000038 - momentum: 0.000000
|
130 |
+
2024-03-26 11:01:15,244 epoch 4 - iter 12/48 - loss 0.16078746 - time (sec): 6.13 - samples/sec: 1424.34 - lr: 0.000038 - momentum: 0.000000
|
131 |
+
2024-03-26 11:01:17,467 epoch 4 - iter 16/48 - loss 0.14298013 - time (sec): 8.36 - samples/sec: 1432.75 - lr: 0.000037 - momentum: 0.000000
|
132 |
+
2024-03-26 11:01:20,491 epoch 4 - iter 20/48 - loss 0.13519036 - time (sec): 11.38 - samples/sec: 1360.97 - lr: 0.000037 - momentum: 0.000000
|
133 |
+
2024-03-26 11:01:21,975 epoch 4 - iter 24/48 - loss 0.13663630 - time (sec): 12.87 - samples/sec: 1400.91 - lr: 0.000036 - momentum: 0.000000
|
134 |
+
2024-03-26 11:01:23,514 epoch 4 - iter 28/48 - loss 0.13658070 - time (sec): 14.40 - samples/sec: 1439.83 - lr: 0.000036 - momentum: 0.000000
|
135 |
+
2024-03-26 11:01:26,144 epoch 4 - iter 32/48 - loss 0.13666749 - time (sec): 17.03 - samples/sec: 1422.91 - lr: 0.000035 - momentum: 0.000000
|
136 |
+
2024-03-26 11:01:27,183 epoch 4 - iter 36/48 - loss 0.13693895 - time (sec): 18.07 - samples/sec: 1470.16 - lr: 0.000035 - momentum: 0.000000
|
137 |
+
2024-03-26 11:01:29,617 epoch 4 - iter 40/48 - loss 0.13278247 - time (sec): 20.51 - samples/sec: 1424.10 - lr: 0.000034 - momentum: 0.000000
|
138 |
+
2024-03-26 11:01:31,480 epoch 4 - iter 44/48 - loss 0.13260496 - time (sec): 22.37 - samples/sec: 1442.33 - lr: 0.000034 - momentum: 0.000000
|
139 |
+
2024-03-26 11:01:32,883 epoch 4 - iter 48/48 - loss 0.13127512 - time (sec): 23.77 - samples/sec: 1450.02 - lr: 0.000034 - momentum: 0.000000
|
140 |
+
2024-03-26 11:01:32,884 ----------------------------------------------------------------------------------------------------
|
141 |
+
2024-03-26 11:01:32,884 EPOCH 4 done: loss 0.1313 - lr: 0.000034
|
142 |
+
2024-03-26 11:01:33,832 DEV : loss 0.21583451330661774 - f1-score (micro avg) 0.8756
|
143 |
+
2024-03-26 11:01:33,833 saving best model
|
144 |
+
2024-03-26 11:01:34,279 ----------------------------------------------------------------------------------------------------
|
145 |
+
2024-03-26 11:01:36,221 epoch 5 - iter 4/48 - loss 0.10870825 - time (sec): 1.94 - samples/sec: 1437.93 - lr: 0.000033 - momentum: 0.000000
|
146 |
+
2024-03-26 11:01:38,764 epoch 5 - iter 8/48 - loss 0.09524973 - time (sec): 4.48 - samples/sec: 1324.28 - lr: 0.000033 - momentum: 0.000000
|
147 |
+
2024-03-26 11:01:40,833 epoch 5 - iter 12/48 - loss 0.09712497 - time (sec): 6.55 - samples/sec: 1307.49 - lr: 0.000032 - momentum: 0.000000
|
148 |
+
2024-03-26 11:01:42,897 epoch 5 - iter 16/48 - loss 0.09416056 - time (sec): 8.62 - samples/sec: 1340.70 - lr: 0.000032 - momentum: 0.000000
|
149 |
+
2024-03-26 11:01:44,870 epoch 5 - iter 20/48 - loss 0.09859046 - time (sec): 10.59 - samples/sec: 1351.47 - lr: 0.000031 - momentum: 0.000000
|
150 |
+
2024-03-26 11:01:46,427 epoch 5 - iter 24/48 - loss 0.10256071 - time (sec): 12.15 - samples/sec: 1400.37 - lr: 0.000031 - momentum: 0.000000
|
151 |
+
2024-03-26 11:01:48,743 epoch 5 - iter 28/48 - loss 0.10312729 - time (sec): 14.46 - samples/sec: 1392.86 - lr: 0.000030 - momentum: 0.000000
|
152 |
+
2024-03-26 11:01:51,403 epoch 5 - iter 32/48 - loss 0.10114194 - time (sec): 17.12 - samples/sec: 1382.56 - lr: 0.000030 - momentum: 0.000000
|
153 |
+
2024-03-26 11:01:53,777 epoch 5 - iter 36/48 - loss 0.09523322 - time (sec): 19.50 - samples/sec: 1391.93 - lr: 0.000029 - momentum: 0.000000
|
154 |
+
2024-03-26 11:01:54,702 epoch 5 - iter 40/48 - loss 0.09494868 - time (sec): 20.42 - samples/sec: 1432.80 - lr: 0.000029 - momentum: 0.000000
|
155 |
+
2024-03-26 11:01:57,363 epoch 5 - iter 44/48 - loss 0.09114674 - time (sec): 23.08 - samples/sec: 1402.97 - lr: 0.000029 - momentum: 0.000000
|
156 |
+
2024-03-26 11:01:58,852 epoch 5 - iter 48/48 - loss 0.09130317 - time (sec): 24.57 - samples/sec: 1402.93 - lr: 0.000028 - momentum: 0.000000
|
157 |
+
2024-03-26 11:01:58,853 ----------------------------------------------------------------------------------------------------
|
158 |
+
2024-03-26 11:01:58,853 EPOCH 5 done: loss 0.0913 - lr: 0.000028
|
159 |
+
2024-03-26 11:01:59,809 DEV : loss 0.19779938459396362 - f1-score (micro avg) 0.8914
|
160 |
+
2024-03-26 11:01:59,812 saving best model
|
161 |
+
2024-03-26 11:02:00,262 ----------------------------------------------------------------------------------------------------
|
162 |
+
2024-03-26 11:02:02,268 epoch 6 - iter 4/48 - loss 0.05285658 - time (sec): 2.01 - samples/sec: 1318.38 - lr: 0.000028 - momentum: 0.000000
|
163 |
+
2024-03-26 11:02:04,480 epoch 6 - iter 8/48 - loss 0.07094565 - time (sec): 4.22 - samples/sec: 1311.76 - lr: 0.000027 - momentum: 0.000000
|
164 |
+
2024-03-26 11:02:06,334 epoch 6 - iter 12/48 - loss 0.07133832 - time (sec): 6.07 - samples/sec: 1423.40 - lr: 0.000027 - momentum: 0.000000
|
165 |
+
2024-03-26 11:02:08,617 epoch 6 - iter 16/48 - loss 0.07133402 - time (sec): 8.35 - samples/sec: 1375.26 - lr: 0.000026 - momentum: 0.000000
|
166 |
+
2024-03-26 11:02:10,436 epoch 6 - iter 20/48 - loss 0.07725707 - time (sec): 10.17 - samples/sec: 1379.46 - lr: 0.000026 - momentum: 0.000000
|
167 |
+
2024-03-26 11:02:12,944 epoch 6 - iter 24/48 - loss 0.07565556 - time (sec): 12.68 - samples/sec: 1357.85 - lr: 0.000025 - momentum: 0.000000
|
168 |
+
2024-03-26 11:02:14,899 epoch 6 - iter 28/48 - loss 0.07510084 - time (sec): 14.64 - samples/sec: 1351.33 - lr: 0.000025 - momentum: 0.000000
|
169 |
+
2024-03-26 11:02:17,426 epoch 6 - iter 32/48 - loss 0.07424382 - time (sec): 17.16 - samples/sec: 1331.71 - lr: 0.000024 - momentum: 0.000000
|
170 |
+
2024-03-26 11:02:20,980 epoch 6 - iter 36/48 - loss 0.06879978 - time (sec): 20.72 - samples/sec: 1287.17 - lr: 0.000024 - momentum: 0.000000
|
171 |
+
2024-03-26 11:02:22,685 epoch 6 - iter 40/48 - loss 0.06691408 - time (sec): 22.42 - samples/sec: 1317.93 - lr: 0.000023 - momentum: 0.000000
|
172 |
+
2024-03-26 11:02:24,577 epoch 6 - iter 44/48 - loss 0.06499311 - time (sec): 24.31 - samples/sec: 1320.84 - lr: 0.000023 - momentum: 0.000000
|
173 |
+
2024-03-26 11:02:25,873 epoch 6 - iter 48/48 - loss 0.06648827 - time (sec): 25.61 - samples/sec: 1346.03 - lr: 0.000023 - momentum: 0.000000
|
174 |
+
2024-03-26 11:02:25,873 ----------------------------------------------------------------------------------------------------
|
175 |
+
2024-03-26 11:02:25,873 EPOCH 6 done: loss 0.0665 - lr: 0.000023
|
176 |
+
2024-03-26 11:02:26,828 DEV : loss 0.1999371349811554 - f1-score (micro avg) 0.9161
|
177 |
+
2024-03-26 11:02:26,830 saving best model
|
178 |
+
2024-03-26 11:02:27,281 ----------------------------------------------------------------------------------------------------
|
179 |
+
2024-03-26 11:02:28,971 epoch 7 - iter 4/48 - loss 0.06036740 - time (sec): 1.69 - samples/sec: 1629.41 - lr: 0.000022 - momentum: 0.000000
|
180 |
+
2024-03-26 11:02:31,071 epoch 7 - iter 8/48 - loss 0.06185033 - time (sec): 3.79 - samples/sec: 1420.34 - lr: 0.000022 - momentum: 0.000000
|
181 |
+
2024-03-26 11:02:33,357 epoch 7 - iter 12/48 - loss 0.06731893 - time (sec): 6.07 - samples/sec: 1367.20 - lr: 0.000021 - momentum: 0.000000
|
182 |
+
2024-03-26 11:02:35,999 epoch 7 - iter 16/48 - loss 0.05862319 - time (sec): 8.71 - samples/sec: 1324.52 - lr: 0.000021 - momentum: 0.000000
|
183 |
+
2024-03-26 11:02:38,385 epoch 7 - iter 20/48 - loss 0.05493743 - time (sec): 11.10 - samples/sec: 1316.65 - lr: 0.000020 - momentum: 0.000000
|
184 |
+
2024-03-26 11:02:39,763 epoch 7 - iter 24/48 - loss 0.05293912 - time (sec): 12.48 - samples/sec: 1370.98 - lr: 0.000020 - momentum: 0.000000
|
185 |
+
2024-03-26 11:02:41,198 epoch 7 - iter 28/48 - loss 0.05212759 - time (sec): 13.91 - samples/sec: 1433.60 - lr: 0.000019 - momentum: 0.000000
|
186 |
+
2024-03-26 11:02:43,213 epoch 7 - iter 32/48 - loss 0.05081756 - time (sec): 15.93 - samples/sec: 1423.96 - lr: 0.000019 - momentum: 0.000000
|
187 |
+
2024-03-26 11:02:45,413 epoch 7 - iter 36/48 - loss 0.04903245 - time (sec): 18.13 - samples/sec: 1412.86 - lr: 0.000018 - momentum: 0.000000
|
188 |
+
2024-03-26 11:02:47,992 epoch 7 - iter 40/48 - loss 0.05091923 - time (sec): 20.71 - samples/sec: 1388.02 - lr: 0.000018 - momentum: 0.000000
|
189 |
+
2024-03-26 11:02:49,872 epoch 7 - iter 44/48 - loss 0.05031687 - time (sec): 22.59 - samples/sec: 1403.46 - lr: 0.000017 - momentum: 0.000000
|
190 |
+
2024-03-26 11:02:51,872 epoch 7 - iter 48/48 - loss 0.04903771 - time (sec): 24.59 - samples/sec: 1402.03 - lr: 0.000017 - momentum: 0.000000
|
191 |
+
2024-03-26 11:02:51,872 ----------------------------------------------------------------------------------------------------
|
192 |
+
2024-03-26 11:02:51,872 EPOCH 7 done: loss 0.0490 - lr: 0.000017
|
193 |
+
2024-03-26 11:02:52,826 DEV : loss 0.19628769159317017 - f1-score (micro avg) 0.91
|
194 |
+
2024-03-26 11:02:52,829 ----------------------------------------------------------------------------------------------------
|
195 |
+
2024-03-26 11:02:54,902 epoch 8 - iter 4/48 - loss 0.03574904 - time (sec): 2.07 - samples/sec: 1304.28 - lr: 0.000017 - momentum: 0.000000
|
196 |
+
2024-03-26 11:02:57,726 epoch 8 - iter 8/48 - loss 0.03594155 - time (sec): 4.90 - samples/sec: 1134.80 - lr: 0.000016 - momentum: 0.000000
|
197 |
+
2024-03-26 11:02:59,057 epoch 8 - iter 12/48 - loss 0.03729970 - time (sec): 6.23 - samples/sec: 1281.91 - lr: 0.000016 - momentum: 0.000000
|
198 |
+
2024-03-26 11:03:01,523 epoch 8 - iter 16/48 - loss 0.04291151 - time (sec): 8.69 - samples/sec: 1294.85 - lr: 0.000015 - momentum: 0.000000
|
199 |
+
2024-03-26 11:03:04,125 epoch 8 - iter 20/48 - loss 0.03659224 - time (sec): 11.30 - samples/sec: 1333.96 - lr: 0.000015 - momentum: 0.000000
|
200 |
+
2024-03-26 11:03:05,469 epoch 8 - iter 24/48 - loss 0.03664124 - time (sec): 12.64 - samples/sec: 1408.00 - lr: 0.000014 - momentum: 0.000000
|
201 |
+
2024-03-26 11:03:08,835 epoch 8 - iter 28/48 - loss 0.03886089 - time (sec): 16.01 - samples/sec: 1363.36 - lr: 0.000014 - momentum: 0.000000
|
202 |
+
2024-03-26 11:03:10,860 epoch 8 - iter 32/48 - loss 0.03830054 - time (sec): 18.03 - samples/sec: 1367.36 - lr: 0.000013 - momentum: 0.000000
|
203 |
+
2024-03-26 11:03:11,922 epoch 8 - iter 36/48 - loss 0.03798648 - time (sec): 19.09 - samples/sec: 1406.43 - lr: 0.000013 - momentum: 0.000000
|
204 |
+
2024-03-26 11:03:13,634 epoch 8 - iter 40/48 - loss 0.03809773 - time (sec): 20.80 - samples/sec: 1404.82 - lr: 0.000012 - momentum: 0.000000
|
205 |
+
2024-03-26 11:03:15,288 epoch 8 - iter 44/48 - loss 0.03863525 - time (sec): 22.46 - samples/sec: 1422.70 - lr: 0.000012 - momentum: 0.000000
|
206 |
+
2024-03-26 11:03:17,312 epoch 8 - iter 48/48 - loss 0.03975429 - time (sec): 24.48 - samples/sec: 1408.02 - lr: 0.000011 - momentum: 0.000000
|
207 |
+
2024-03-26 11:03:17,312 ----------------------------------------------------------------------------------------------------
|
208 |
+
2024-03-26 11:03:17,312 EPOCH 8 done: loss 0.0398 - lr: 0.000011
|
209 |
+
2024-03-26 11:03:18,283 DEV : loss 0.19287405908107758 - f1-score (micro avg) 0.9269
|
210 |
+
2024-03-26 11:03:18,284 saving best model
|
211 |
+
2024-03-26 11:03:18,696 ----------------------------------------------------------------------------------------------------
|
212 |
+
2024-03-26 11:03:20,629 epoch 9 - iter 4/48 - loss 0.01911719 - time (sec): 1.93 - samples/sec: 1386.69 - lr: 0.000011 - momentum: 0.000000
|
213 |
+
2024-03-26 11:03:23,880 epoch 9 - iter 8/48 - loss 0.01246336 - time (sec): 5.18 - samples/sec: 1204.95 - lr: 0.000011 - momentum: 0.000000
|
214 |
+
2024-03-26 11:03:25,618 epoch 9 - iter 12/48 - loss 0.01953089 - time (sec): 6.92 - samples/sec: 1255.75 - lr: 0.000010 - momentum: 0.000000
|
215 |
+
2024-03-26 11:03:27,891 epoch 9 - iter 16/48 - loss 0.02215764 - time (sec): 9.19 - samples/sec: 1253.18 - lr: 0.000010 - momentum: 0.000000
|
216 |
+
2024-03-26 11:03:30,272 epoch 9 - iter 20/48 - loss 0.02954547 - time (sec): 11.57 - samples/sec: 1278.31 - lr: 0.000009 - momentum: 0.000000
|
217 |
+
2024-03-26 11:03:32,531 epoch 9 - iter 24/48 - loss 0.03008158 - time (sec): 13.83 - samples/sec: 1292.82 - lr: 0.000009 - momentum: 0.000000
|
218 |
+
2024-03-26 11:03:34,919 epoch 9 - iter 28/48 - loss 0.02806782 - time (sec): 16.22 - samples/sec: 1292.06 - lr: 0.000008 - momentum: 0.000000
|
219 |
+
2024-03-26 11:03:37,371 epoch 9 - iter 32/48 - loss 0.02822729 - time (sec): 18.67 - samples/sec: 1285.90 - lr: 0.000008 - momentum: 0.000000
|
220 |
+
2024-03-26 11:03:39,285 epoch 9 - iter 36/48 - loss 0.03078142 - time (sec): 20.59 - samples/sec: 1300.40 - lr: 0.000007 - momentum: 0.000000
|
221 |
+
2024-03-26 11:03:41,552 epoch 9 - iter 40/48 - loss 0.03147072 - time (sec): 22.86 - samples/sec: 1290.12 - lr: 0.000007 - momentum: 0.000000
|
222 |
+
2024-03-26 11:03:43,705 epoch 9 - iter 44/48 - loss 0.03087065 - time (sec): 25.01 - samples/sec: 1303.67 - lr: 0.000006 - momentum: 0.000000
|
223 |
+
2024-03-26 11:03:44,519 epoch 9 - iter 48/48 - loss 0.03185010 - time (sec): 25.82 - samples/sec: 1335.01 - lr: 0.000006 - momentum: 0.000000
|
224 |
+
2024-03-26 11:03:44,519 ----------------------------------------------------------------------------------------------------
|
225 |
+
2024-03-26 11:03:44,519 EPOCH 9 done: loss 0.0319 - lr: 0.000006
|
226 |
+
2024-03-26 11:03:45,484 DEV : loss 0.19984783232212067 - f1-score (micro avg) 0.9272
|
227 |
+
2024-03-26 11:03:45,485 saving best model
|
228 |
+
2024-03-26 11:03:46,030 ----------------------------------------------------------------------------------------------------
|
229 |
+
2024-03-26 11:03:47,843 epoch 10 - iter 4/48 - loss 0.01174329 - time (sec): 1.81 - samples/sec: 1450.44 - lr: 0.000006 - momentum: 0.000000
|
230 |
+
2024-03-26 11:03:49,911 epoch 10 - iter 8/48 - loss 0.02116348 - time (sec): 3.88 - samples/sec: 1427.87 - lr: 0.000005 - momentum: 0.000000
|
231 |
+
2024-03-26 11:03:52,585 epoch 10 - iter 12/48 - loss 0.02314468 - time (sec): 6.55 - samples/sec: 1331.47 - lr: 0.000005 - momentum: 0.000000
|
232 |
+
2024-03-26 11:03:54,534 epoch 10 - iter 16/48 - loss 0.02792261 - time (sec): 8.50 - samples/sec: 1349.10 - lr: 0.000004 - momentum: 0.000000
|
233 |
+
2024-03-26 11:03:56,483 epoch 10 - iter 20/48 - loss 0.02603172 - time (sec): 10.45 - samples/sec: 1384.04 - lr: 0.000004 - momentum: 0.000000
|
234 |
+
2024-03-26 11:03:58,175 epoch 10 - iter 24/48 - loss 0.03120182 - time (sec): 12.14 - samples/sec: 1396.51 - lr: 0.000003 - momentum: 0.000000
|
235 |
+
2024-03-26 11:04:00,003 epoch 10 - iter 28/48 - loss 0.02955069 - time (sec): 13.97 - samples/sec: 1416.07 - lr: 0.000003 - momentum: 0.000000
|
236 |
+
2024-03-26 11:04:01,231 epoch 10 - iter 32/48 - loss 0.02961233 - time (sec): 15.20 - samples/sec: 1448.94 - lr: 0.000002 - momentum: 0.000000
|
237 |
+
2024-03-26 11:04:04,310 epoch 10 - iter 36/48 - loss 0.02651203 - time (sec): 18.28 - samples/sec: 1401.24 - lr: 0.000002 - momentum: 0.000000
|
238 |
+
2024-03-26 11:04:07,199 epoch 10 - iter 40/48 - loss 0.02941146 - time (sec): 21.17 - samples/sec: 1373.80 - lr: 0.000001 - momentum: 0.000000
|
239 |
+
2024-03-26 11:04:10,009 epoch 10 - iter 44/48 - loss 0.02745505 - time (sec): 23.98 - samples/sec: 1346.36 - lr: 0.000001 - momentum: 0.000000
|
240 |
+
2024-03-26 11:04:11,645 epoch 10 - iter 48/48 - loss 0.02670516 - time (sec): 25.61 - samples/sec: 1345.79 - lr: 0.000000 - momentum: 0.000000
|
241 |
+
2024-03-26 11:04:11,646 ----------------------------------------------------------------------------------------------------
|
242 |
+
2024-03-26 11:04:11,646 EPOCH 10 done: loss 0.0267 - lr: 0.000000
|
243 |
+
2024-03-26 11:04:12,623 DEV : loss 0.19916442036628723 - f1-score (micro avg) 0.9316
|
244 |
+
2024-03-26 11:04:12,624 saving best model
|
245 |
+
2024-03-26 11:04:13,361 ----------------------------------------------------------------------------------------------------
|
246 |
+
2024-03-26 11:04:13,362 Loading model from best epoch ...
|
247 |
+
2024-03-26 11:04:14,266 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
|
248 |
+
2024-03-26 11:04:15,056
|
249 |
+
Results:
|
250 |
+
- F-score (micro) 0.9173
|
251 |
+
- F-score (macro) 0.697
|
252 |
+
- Accuracy 0.8496
|
253 |
+
|
254 |
+
By class:
|
255 |
+
precision recall f1-score support
|
256 |
+
|
257 |
+
Unternehmen 0.9115 0.8910 0.9011 266
|
258 |
+
Auslagerung 0.8842 0.9197 0.9016 249
|
259 |
+
Ort 0.9779 0.9925 0.9852 134
|
260 |
+
Software 0.0000 0.0000 0.0000 0
|
261 |
+
|
262 |
+
micro avg 0.9117 0.9230 0.9173 649
|
263 |
+
macro avg 0.6934 0.7008 0.6970 649
|
264 |
+
weighted avg 0.9147 0.9230 0.9187 649
|
265 |
+
|
266 |
+
2024-03-26 11:04:15,056 ----------------------------------------------------------------------------------------------------
|