File size: 16,430 Bytes
23919a7
cab7bfb
23919a7
 
 
cab7bfb
 
23919a7
 
63046ef
 
 
 
23919a7
 
63046ef
23919a7
 
 
63046ef
 
 
 
23919a7
 
 
63046ef
 
 
 
23919a7
 
 
 
 
 
63046ef
 
 
23919a7
 
 
 
63046ef
 
 
23919a7
 
 
 
 
 
 
 
b0bee8a
 
 
 
 
 
 
 
 
 
 
23919a7
63046ef
23919a7
 
63046ef
23919a7
 
 
 
 
 
 
 
 
 
 
 
63046ef
 
 
 
 
 
23919a7
 
 
 
 
63046ef
 
 
 
f57fafe
23919a7
 
f57fafe
23919a7
 
 
 
 
 
 
 
63046ef
23919a7
 
 
63046ef
 
 
 
23919a7
 
 
 
 
 
63046ef
23919a7
63046ef
 
f57fafe
63046ef
 
 
 
 
 
23919a7
 
0e18727
63046ef
 
 
 
 
23919a7
 
63046ef
23919a7
63046ef
23919a7
 
63046ef
 
 
 
 
23919a7
 
 
0e18727
23919a7
 
 
 
63046ef
 
 
 
 
23919a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63046ef
 
 
 
23919a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cab7bfb
23919a7
 
 
 
 
 
 
f57fafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23919a7
 
 
 
 
 
 
 
cab7bfb
23919a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cab7bfb
23919a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cab7bfb
23919a7
cab7bfb
23919a7
 
 
 
 
 
 
cab7bfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23919a7
cab7bfb
23919a7
cab7bfb
 
 
 
 
 
 
 
 
23919a7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
from dataclasses import dataclass
from typing import List, Optional, Dict
from datetime import datetime
import numpy as np
from termcolor import colored
import json
from encoder import create_encoders, FIELD_MAPPING, LegacyFieldEncoder
from embeddings import EmbeddingManager, MatchResult, Skill

@dataclass
class Skill:
    skill_name: str

@dataclass
class JobPosting:
    # Essential matching fields (from API)
    title: str
    role_description: str
    company_description: str
    primary_skills: List[Skill]
    secondary_skills: List[Skill]
    
    # Additional API fields (with defaults)
    job_posting_id: str = "test_id"
    status: str = "active"
    location: str = "Test Location"
    workplace_model: str = "hybrid"
    job_engagement: str = "contract-to-hire"
    min_years_of_experience: int = 0
    max_years_of_experience: int = 0
    project_duration_from: datetime = datetime.now()
    project_duration_to: datetime = datetime.now()
    hourly_bill_rate_min: float = 50.0
    hourly_bill_rate_max: float = 100.0
    annual_salary_min: float = 100000.0
    annual_salary_max: float = 150000.0
    day_to_day_job_responsibilities: str = ""
    reason_for_hire: str = ""
    application_of_skills: str = ""
    company_id: str = "test_company"

@dataclass
class IndependentJobSeekerAssessmentRDS:
    # Essential matching fields (from API)
    primary_skills: List[str]
    secondary_skills: List[str]
    experiences: List[dict]
    educations: List[dict]
    certifications: List[dict]

@dataclass
class JobseekerInfoRDS:
    summary: str

def transform_jobseeker_to_opensearch(jobseeker: IndependentJobSeekerAssessmentRDS, jobseeker_id: str) -> Dict:
    """Transform jobseeker data to OpenSearch format"""
    return {
        "jobseeker_id": jobseeker_id,
        "primary_skills": jobseeker.primary_skills,
        "secondary_skills": jobseeker.secondary_skills,
        "experiences": jobseeker.experiences,
        "educations": jobseeker.educations,
        "certifications": jobseeker.certifications,
    }

def create_test_data():
    """Create test data matching actual API fields"""
    print("\nCreating test data...")
    
    # Create test job posting with only relevant fields
    job_posting = JobPosting(
        title="Senior Software Engineer - ML/Cloud",
        role_description="Leading backend development team in cloud infrastructure projects. "
                        "Focus on machine learning systems and scalable architectures. "
                        "Responsible for ML pipeline optimization and team mentorship.",
        company_description="Tech company specializing in AI solutions",
        primary_skills=[
            Skill("Python"),
            Skill("AWS"),
            Skill("Kubernetes"),
            Skill("TensorFlow"),
            Skill("PyTorch")
        ],
        secondary_skills=[
            Skill("Docker"),
            Skill("CI/CD"),
            Skill("Agile"),
            Skill("Team Leadership")
        ]
    )

    # Create matching job seeker (should show high similarity)
    matching_seeker = IndependentJobSeekerAssessmentRDS(
        primary_skills=[
            "Python", "AWS", "Kubernetes", "TensorFlow", "PyTorch"
        ],
        secondary_skills=[
            "Docker", "CI/CD", "Agile", "Team Leadership"
        ],
        experiences=[{
            "title": "Senior Software Engineer",
            "company": "AI Tech Corp",
            "duration": "4 years",
            "description": "Led machine learning infrastructure team, developed scalable ML pipelines, "
                         "optimized cloud resources, mentored junior engineers"
        }],
        educations=[{
            "degree": "Master's",
            "field": "Computer Science",
            "institution": "Tech University"
        }],
        certifications=[{
            "name": "AWS Solutions Architect Professional",
            "organization": "AWS",
            "start_date": "2023-01",
            "end_date": "2026-01"
        }]
    )

    matching_info = JobseekerInfoRDS(
        summary="Senior ML engineer specialized in building scalable AI systems and leading engineering teams"
    )

    # Create partial matching job seeker - more realistic partial match
    partial_matching_seeker = IndependentJobSeekerAssessmentRDS(
        primary_skills=[
            "Python", "AWS",  # Has the basic skills
            "Java",
            "TensorFlow"  # Missing PyTorch, just has TensorFlow
        ],
        secondary_skills=[
            "Docker",  # Has some but not all secondary skills
            "Git",     # Different version control instead of CI/CD
            "Scrum"    # Basic Agile framework but no team leadership
        ],
        experiences=[{
            "title": "Data Analyst",
            "company": "Tech Solutions Inc",
            "duration": "2 years",
            "description": "Worked on machine learning projects using TensorFlow. "
                         "Maintained AWS infrastructure and helped with basic Kubernetes deployments. "
                         "Member of an agile team developing ML-powered features."
        }],
        educations=[{
            "degree": "Bachelor's",  # Lower education level
            "field": "Computer Science",
            "institution": "Tech University"
        }],
        certifications=[{
            "name": "AWS Cloud Practitioner",  # Entry-level cert
            "organization": "AWS",
            "start_date": "2022-01",
            "end_date": "2025-01"
        }]
    )

    partial_matching_info = JobseekerInfoRDS(
        summary="Data analyst working on graphical analysis and budget forecasting."
    )

    # Create non-matching job seeker
    non_matching_seeker = IndependentJobSeekerAssessmentRDS(
        primary_skills=[
            "Java", "Spring", "Oracle"
        ],
        secondary_skills=[
            "Hibernate", "JSP", "Struts"
        ],
        experiences=[{
            "title": "Java Developer",
            "company": "Enterprise Corp",
            "duration": "5 years",
            "description": "Built enterprise banking applications using Java stack, "
                         "implemented transaction processing systems"
        }],
        educations=[{
            "degree": "Bachelor's",
            "field": "Information Systems",
            "institution": "Business School"
        }],
        certifications=[{
            "name": "Oracle Certified Professional",
            "organization": "Oracle",
            "start_date": "2022-01",
            "end_date": "2025-01"
        }]
    )

    non_matching_info = JobseekerInfoRDS(
        summary="Experienced Java developer specialized in enterprise banking applications"
    )

    return (
        job_posting,
        matching_seeker,
        matching_info,
        partial_matching_seeker,
        partial_matching_info,
        non_matching_seeker,
        non_matching_info
    )

def analyze_match_result(match_result: MatchResult, candidate_type: str = "matching"):
    """Analyze and display match results"""
    print(f"\nAnalyzing match results for {candidate_type} candidate:")
    print("=" * 60)
    
    # Print field-by-field analysis
    print("\nField-by-Field Analysis:")
    print("-" * 40)
    
    # Define the order we want to display fields
    field_order = [
        'title_summary',
        'primary_skills_primary_skills',
        'secondary_skills_secondary_skills',
        'role_description_experience',
        'role_description_certifications'  # Added certifications
    ]
    
    # Print scores in specified order
    for field_pair in field_order:
        if field_pair in match_result.field_scores:
            score = match_result.field_scores[field_pair]
            score_color = "green" if score > 0.85 else "yellow" if score > 0.7 else "red"
            print(f"{field_pair:35} | {colored(f'{score:.3f}', score_color)}")
    
    # Print overall similarity
    print("\nOverall Match Analysis:")
    print("-" * 40)
    score_color = "green" if match_result.similarity_score > 0.8 else \
                 "yellow" if match_result.similarity_score > 0.65 else "red"
    print(f"Match Score: {colored(f'{match_result.similarity_score:.3f}', score_color)}")
    
    # Print interpretation
    print("\nMatch Interpretation:")
    if match_result.similarity_score > 0.8:
        print(colored("Strong Match", "green"), "- Highly relevant candidate")
        print("Key Strengths:")
        print(match_result.explanation)
    elif match_result.similarity_score > 0.65:
        print(colored("Moderate Match", "yellow"), "- Potentially suitable candidate")
        print("Analysis:")
        print(match_result.explanation)
    else:
        print(colored("Weak Match", "red"), "- May not be suitable")
        print("Gaps:")
        print(match_result.explanation)
    
    return match_result.similarity_score

def run_model_comparison_tests(manager: EmbeddingManager):
    """Run comprehensive comparison tests"""
    print("\nInitializing embedding manager...")

    # Get test data
    (job_posting, matching_seeker, matching_info,
     partial_matching_seeker, partial_matching_info,
     non_matching_seeker, non_matching_info) = create_test_data()

    print("\n" + "="*80)
    print("Testing with matching candidate (should show high similarity)")
    print("="*80)
    
    # Get embeddings and match result for matching candidate
    job_embeddings = manager.embed_jobposting(job_posting)
    matching_embeddings = manager.embed_jobseeker(matching_seeker, matching_info)
    matching_result = manager.calculate_similarity(job_embeddings, matching_embeddings)
    matching_similarity = analyze_match_result(matching_result, "matching")

    print("\n" + "="*80)
    print("Testing with partially matching candidate (should show moderate similarity)")
    print("="*80)
    
    # Get embeddings and match result for partial match
    partial_embeddings = manager.embed_jobseeker(partial_matching_seeker, partial_matching_info)
    partial_result = manager.calculate_similarity(job_embeddings, partial_embeddings)
    partial_similarity = analyze_match_result(partial_result, "partial matching")

    print("\n" + "="*80)
    print("Testing with non-matching candidate (should show low similarity)")
    print("="*80)
    
    # Get embeddings and match result for non-match
    non_matching_embeddings = manager.embed_jobseeker(non_matching_seeker, non_matching_info)
    non_matching_result = manager.calculate_similarity(job_embeddings, non_matching_embeddings)
    non_matching_similarity = analyze_match_result(non_matching_result, "non-matching")

    # Print comparative analysis
    print("\nComparative Analysis:")
    print("="*40)
    
    # Similarity differences
    print("\nSimilarity Differences:")
    match_vs_partial = matching_similarity - partial_similarity
    match_vs_non = matching_similarity - non_matching_similarity
    partial_vs_non = partial_similarity - non_matching_similarity
    
    print(f"Matching vs Partial:     {colored(f'{match_vs_partial:>8.3f}', 'blue')}")
    print(f"Matching vs Non-Match:   {colored(f'{match_vs_non:>8.3f}', 'blue')}")
    print(f"Partial vs Non-Match:    {colored(f'{partial_vs_non:>8.3f}', 'blue')}")
    
    # Discrimination ratios
    print("\nDiscrimination Ratios:")
    match_partial_ratio = matching_similarity / max(partial_similarity, 0.001)
    match_non_ratio = matching_similarity / max(non_matching_similarity, 0.001)
    
    ratio_color = "green" if match_partial_ratio > 1.5 else "yellow" if match_partial_ratio > 1.2 else "red"
    print(f"Matching/Partial Ratio:  {colored(f'{match_partial_ratio:>8.2f}x', ratio_color)}")
    
    ratio_color = "green" if match_non_ratio > 2.0 else "yellow" if match_non_ratio > 1.5 else "red"
    print(f"Matching/Non-Match Ratio:{colored(f'{match_non_ratio:>8.2f}x', ratio_color)}")

    # Quality assessment
    print("\nModel Quality Assessment:")
    print("-" * 40)
    discrimination_score = (match_vs_partial + match_vs_non) / 2
    discrimination_color = "green" if discrimination_score > 0.3 else \
                    "yellow" if discrimination_score > 0.2 else "red"
    print(f"Discrimination Score: {colored(f'{discrimination_score:.3f}', discrimination_color)}")

    if discrimination_score > 0.3:
        print("Model shows good discrimination between candidate types")
    elif discrimination_score > 0.2:
        print("Model shows moderate discrimination - may need tuning")
    else:
        print("Model shows poor discrimination - consider adjusting weights or thresholds")

def run_comparison_tests(job_encoder, seeker_encoder, legacy_encoder):
    """Run tests comparing new field-specific vs legacy approach"""
    print("\nRunning comparison tests between field-specific and legacy approaches...")
    
    # Get test data
    (job_posting, matching_seeker, matching_info,
     partial_matching_seeker, partial_matching_info,
     non_matching_seeker, non_matching_info) = create_test_data()
    
    # Test new field-specific approach
    print("\n" + "="*80)
    print("TESTING FIELD-SPECIFIC APPROACH")
    print("="*80)
    manager = EmbeddingManager(job_encoder, seeker_encoder)
    run_model_comparison_tests(manager)
    
    # Test legacy approach
    print("\n" + "="*80)
    print("TESTING LEGACY APPROACH")
    print("="*80)
    
    # Create legacy embeddings
    print("\nGenerating legacy embeddings...")
    job_emb = legacy_encoder.encode_jobposting(job_posting)
    match_emb = legacy_encoder.encode_jobseeker(matching_seeker, matching_info)
    partial_emb = legacy_encoder.encode_jobseeker(partial_matching_seeker, partial_matching_info)
    non_match_emb = legacy_encoder.encode_jobseeker(non_matching_seeker, non_matching_info)

    print("\nCalculating legacy similarities...")
    
    def calc_legacy_sim(emb1, emb2):
        """Calculate cosine similarity between two embeddings"""
        # Ensure embeddings are normalized
        emb1_norm = emb1 / (np.linalg.norm(emb1) + 1e-9)
        emb2_norm = emb2 / (np.linalg.norm(emb2) + 1e-9)
        
        # Calculate cosine similarity
        sim = np.dot(emb1_norm, emb2_norm)
        
        # Debug prints
        print(f"DEBUG: Embedding norms: {np.linalg.norm(emb1):.3f}, {np.linalg.norm(emb2):.3f}")
        print(f"DEBUG: Raw similarity: {sim:.3f}")
        
        return sim

    # Calculate similarities with extra debug info
    print("\nMatching candidate:")
    match_sim = (calc_legacy_sim(job_emb, match_emb) + 1) / 2
    print("\nPartial matching candidate:")
    partial_sim = (calc_legacy_sim(job_emb, partial_emb) + 1) / 2
    print("\nNon-matching candidate:")
    non_match_sim = (calc_legacy_sim(job_emb, non_match_emb) + 1) / 2
    
    print(f"\nLegacy Approach Results:")
    print(f"Job embedding shape:               {job_emb.shape}")
    print(f"Matching embedding shape:          {match_emb.shape}")
    print(f"Matching candidate similarity:     {match_sim:.3f}")
    print(f"Partial matching similarity:       {partial_sim:.3f}")
    print(f"Non-matching similarity:          {non_match_sim:.3f}")
    
    print("\nLegacy Discrimination Analysis:")
    print(f"Match vs Partial diff:            {(match_sim - partial_sim):.3f}")
    print(f"Match vs Non-match diff:          {(match_sim - non_match_sim):.3f}")
    print(f"Match/Non-match ratio:            {(match_sim / non_match_sim):.2f}x")

    # Compare embedding statistics
    print("\nEmbedding Statistics:")
    print(f"Job embedding mean/std: {np.mean(job_emb):.3f}/{np.std(job_emb):.3f}")
    print(f"Match embedding mean/std: {np.mean(match_emb):.3f}/{np.std(match_emb):.3f}")
    print(f"Partial embedding mean/std: {np.mean(partial_emb):.3f}/{np.std(partial_emb):.3f}")
    print(f"Non-match embedding mean/std: {np.mean(non_match_emb):.3f}/{np.std(non_match_emb):.3f}")


def main():
    """Main test function with both approaches"""
    print("Creating encoders...")
    
    # Get both encoders for the field-specific approach
    field_encoder, seeker_encoder = create_encoders('all-mpnet-base-v2')
    
    # Create legacy encoder using local Qwen2
    legacy_encoder = LegacyFieldEncoder("/Users/sebastian_a/jobposting-embedding")
    
    # Pass both encoders to comparison
    run_comparison_tests(field_encoder, seeker_encoder, legacy_encoder)

if __name__ == "__main__":
    main()