File size: 3,232 Bytes
5a53b54 75164bc e73bcac 75164bc e73bcac 5a53b54 e73bcac 75164bc 5a53b54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: edu-modernbert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# edu-modernbert
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2864
- Precision: 0.5389
- Recall: 0.3949
- F1: 0.4305
- Accuracy: 0.6820
- Binary Precision: 0.7559
- Binary Recall: 0.4496
- Binary F1: 0.5638
- Binary Accuracy: 0.9373
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1024
- eval_batch_size: 512
- seed: 0
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Binary Precision | Binary Recall | Binary F1 | Binary Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:----------------:|:-------------:|:---------:|:---------------:|
| No log | 0 | 0 | 2.4591 | 0.1116 | 0.1645 | 0.0484 | 0.1386 | 0.0 | 0.0 | 0.0 | 0.9098 |
| 0.3196 | 2.4331 | 1000 | 0.3097 | 0.5201 | 0.3691 | 0.3946 | 0.6587 | 0.7614 | 0.3580 | 0.4870 | 0.9320 |
| 0.3064 | 4.8662 | 2000 | 0.3067 | 0.5273 | 0.3882 | 0.4154 | 0.6599 | 0.7391 | 0.4375 | 0.5496 | 0.9353 |
| 0.3088 | 7.2993 | 3000 | 0.2951 | 0.5353 | 0.3833 | 0.4169 | 0.6744 | 0.7656 | 0.4007 | 0.5261 | 0.9349 |
| 0.2991 | 9.7324 | 4000 | 0.2975 | 0.5421 | 0.3921 | 0.4234 | 0.6699 | 0.7316 | 0.4643 | 0.5681 | 0.9363 |
| 0.2957 | 12.1655 | 5000 | 0.2920 | 0.5362 | 0.3859 | 0.4207 | 0.6813 | 0.7811 | 0.3953 | 0.5249 | 0.9355 |
| 0.2932 | 14.5985 | 6000 | 0.2881 | 0.5364 | 0.3946 | 0.4298 | 0.6824 | 0.7591 | 0.4351 | 0.5532 | 0.9366 |
| 0.2862 | 17.0316 | 7000 | 0.2876 | 0.5411 | 0.3850 | 0.4213 | 0.6829 | 0.7713 | 0.4104 | 0.5358 | 0.9359 |
| 0.2894 | 19.4647 | 8000 | 0.2864 | 0.5389 | 0.3949 | 0.4305 | 0.6820 | 0.7559 | 0.4496 | 0.5638 | 0.9373 |
### Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|