metadata
license: other
language:
- en
tags:
- causal-lm
- code
metrics:
- code_eval
library_name: transformers
model-index:
- name: stabilityai/stable-code-instruct-3b
results:
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Python)
metrics:
- name: pass@1
type: pass@1
value: 32.4
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (C++)
metrics:
- name: pass@1
type: pass@1
value: 30.9
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Java)
metrics:
- name: pass@1
type: pass@1
value: 32.1
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 32.1
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (PHP)
metrics:
- name: pass@1
type: pass@1
value: 24.2
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Rust)
metrics:
- name: pass@1
type: pass@1
value: 23
verified: false
stable-code-instruct-3b
Model Description
stable-code-instruct-3b
is a 2.7B billion parameter decoder-only language model tuned from stable-code-3b
. This model was trained on a mix of publicly available datasets, synthetic datasets using Direct Preference Optimization (DPO).
This instruct tune demonstrates state-of-the-art performance (compared to models of similar size) on the MultiPL-E metrics across multiple programming languages tested using BigCode's Evaluation Harness, and on the code portions of MT Bench
Usage
Here's how you can run the model use the model:
# pip install -U transformers
# pip install accelerate
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-instruct-3b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("stabilityai/stable-code-instruct-3b", torch_dtype=torch.bfloat16, trust_remote_code=True)
model.eval()
model = model.cuda()
messages = [
{
"role": "system",
"content": "You are a helpful and polite assistant",
},
{
"role": "user",
"content": "Write a simple website in HTML. When a user clicks the button, it shows a random joke from a list of 4 jokes."
},
]
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
tokens = model.generate(
**inputs,
max_new_tokens=1024,
temperature=0.5,
top_p=0.95,
top_k=100,
do_sample=True,
use_cache=True
)
output = tokenizer.batch_decode(tokens[:, inputs.input_ids.shape[-1]:], skip_special_tokens=False)[0]
How to Cite
@misc{stable-code-instruct-3b,
url={[https://huggingface.co/stabilityai/stable-code-3b](https://huggingface.co/stabilityai/stable-code-instruct-3b)},
title={Stable Code 3B},
author={Phung, Duy, and Pinnaparaju, Nikhil and Adithyan, Reshinth and Tow, Jonathan and Cooper, Nathan}
}