fine_tuned_model / README.md
ssharkey's picture
GoldenMoleFineTuneV0
e740a61 verified
---
base_model: meta-llama/Meta-Llama-3-8B
library_name: transformers
model_name: fine_tuned_model
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for fine_tuned_model
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="ssharkey/fine_tuned_model", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/samsharkey-ss-entrepreneur/llama3-finetuning/runs/wcklgvri)
This model was trained with SFT.
### Framework versions
- TRL: 0.12.0
- Transformers: 4.46.1
- Pytorch: 2.5.1
- Datasets: 3.1.0
- Tokenizers: 0.20.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```