File size: 8,596 Bytes
401522d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from torch.nn import functional as F
from transformers.models.llama.modeling_llama import LlamaAttention
from .quant_linear import *
import triton
import triton.language as tl


@triton.jit
def rotate_half_kernel(
        qk_seq_ptr,
        position_ids_ptr,
        qk_seq_stride,
        position_ids_batch_stride,
        seq_len,
        HEAD_DIM: tl.constexpr,
        BLOCK_HEIGHT: tl.constexpr,
        BLOCK_WIDTH: tl.constexpr,
        INV_BASE: tl.constexpr
):
    # qk_seq_ptr: (bsz, seq_len, 2, num_heads, head_dim) -- OK to be discontinuous in 2nd dimension.
    # position ids: (bsz, seq_len) -- must be contiguous in the last dimension.

    HALF_HEAD: tl.constexpr = HEAD_DIM // 2
    STEPS_PER_ROW: tl.constexpr = HALF_HEAD // BLOCK_WIDTH

    batch_seq = tl.program_id(axis=0)
    row_blk_x_col_blk = tl.program_id(axis=1)

    row_blk = row_blk_x_col_blk // STEPS_PER_ROW
    row = row_blk * BLOCK_HEIGHT
    if BLOCK_WIDTH < HALF_HEAD:
        col_blk = row_blk_x_col_blk % STEPS_PER_ROW
        col = col_blk * BLOCK_WIDTH
    else:
        col: tl.constexpr = 0

    # A block will never cross a sequence boundary, which simplifies things a lot.
    batch = batch_seq // seq_len
    seq = batch_seq % seq_len
    position_id = tl.load(position_ids_ptr + batch * position_ids_batch_stride + seq)
    # As sometimes happens, just calculating this on the fly is faster than loading it from memory.
    # Use `tl.libdevice.exp` rather than `tl.exp` -- the latter is less accurate.
    freq = tl.libdevice.exp((col + tl.arange(0, BLOCK_WIDTH)).to(tl.float32) * INV_BASE) * position_id
    cos = tl.cos(freq).to(tl.float32)
    sin = tl.sin(freq).to(tl.float32)

    col_offsets: tl.constexpr = tl.arange(0, BLOCK_WIDTH)
    embed_offsets = (row * HEAD_DIM + col) + col_offsets
    x_ptrs = (qk_seq_ptr + batch_seq * qk_seq_stride) + embed_offsets

    for k in range(0, BLOCK_HEIGHT):
        x = tl.load(x_ptrs).to(tl.float32)
        y = tl.load(x_ptrs + HALF_HEAD).to(tl.float32)
        out_x = x * cos - y * sin
        tl.store(x_ptrs, out_x)
        out_y = x * sin + y * cos
        tl.store(x_ptrs + HALF_HEAD, out_y)
        x_ptrs += HEAD_DIM


def triton_rotate_half_(qk, position_ids, config=None):
    batch_size, seq_len, qandk, num_heads, head_dim = qk.shape

    # This default is the fastest for most job sizes, at least on my RTX 4090, and when it's not it's within spitting distance of the best option. There are some odd cases where having a block height of 2 or 4 helps but the difference is within 5%. It makes sense that this configuration is fast from a memory bandwidth and caching perspective.
    config = config or {'BLOCK_HEIGHT': 1, 'BLOCK_WIDTH': min(128, head_dim // 2), 'num_warps': 1}
    config['BLOCK_HEIGHT'] = min(config['BLOCK_HEIGHT'], 2 * num_heads)

    assert qk.stride(3) == head_dim
    assert qk.stride(4) == 1
    assert position_ids.shape == (batch_size, seq_len)
    assert position_ids.stride(1) == 1, 'position_ids must be contiguous in the last dimension'
    assert (2 * num_heads) % config['BLOCK_HEIGHT'] == 0, f'number of rows not evenly divisible by {config["BLOCK_HEIGHT"]}'
    assert (head_dim // 2) % config['BLOCK_WIDTH'] == 0, f'number of columns ({head_dim // 2}) not evenly divisible by {config["BLOCK_WIDTH"]}'

    qk_by_seq = qk.view(batch_size * seq_len, 2 * num_heads * head_dim)
    grid = (qk_by_seq.shape[0], (2 * num_heads // config['BLOCK_HEIGHT']) * (head_dim // 2 // config['BLOCK_WIDTH']))

    # Must be the same as the theta of the frequencies used to train the model.
    BASE = 10000.0

    rotate_half_kernel[grid](
        qk_by_seq,
        position_ids,
        qk_by_seq.stride(0),
        position_ids.stride(0),
        seq_len,
        HEAD_DIM=head_dim,
        BLOCK_HEIGHT=config['BLOCK_HEIGHT'],
        BLOCK_WIDTH=config['BLOCK_WIDTH'],
        INV_BASE=-2.0 * math.log(BASE) / head_dim,
        num_warps=config['num_warps']
    )


class QuantLlamaAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        hidden_size,
        num_heads,
        qkv_proj,
        o_proj
    ):
        super().__init__()
        self.hidden_size = hidden_size
        self.num_heads = num_heads
        self.head_dim = hidden_size // num_heads

        if (self.head_dim * num_heads) != self.hidden_size:
            raise ValueError(f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                             f" and `num_heads`: {num_heads}).")
        self.qkv_proj = qkv_proj
        self.o_proj = o_proj

    def forward(self, hidden_states, past_key_value=None, attention_mask=None, position_ids=None, output_attentions=False, use_cache=False):
        """Input shape: Batch x Time x Channel"""

        bsz, q_len, _ = hidden_states.size()

        qkv_states = self.qkv_proj(hidden_states)
        qkv_states = qkv_states.view(bsz, q_len, 3, self.num_heads, self.head_dim)

        # This updates the query and key states in-place, saving VRAM.
        triton_rotate_half_(qkv_states[:, :, :2], position_ids)

        query_states, key_states, value_states = torch.split(qkv_states, 1, dim=2)
        del qkv_states
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)

        is_causal = past_key_value is None

        kv_seq_len = q_len
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]

        if past_key_value is not None:
            # reuse k, v, self_attention
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        if use_cache:
            # Since qkv_proj is fused, query_states etc will hold a reference to the original qkv_states tensor
            # which can cause excessive memory usage by the cache. `contiguous` is a convenient way to workaround this.
            key_states = key_states.contiguous()
            value_states = value_states.contiguous()
            query_states = query_states.contiguous()

        past_key_value = (key_states, value_states) if use_cache else None

        with torch.backends.cuda.sdp_kernel(enable_math=False):
            attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=is_causal)
        del query_states, key_states, value_states

        attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size)
        attn_output = self.o_proj(attn_output)

        return attn_output, None, past_key_value


def make_quant_attn(model):
    """
    Replace all LlamaAttention modules with QuantLlamaAttention modules, fusing the q, k, v projections.
    """

    for name, m in model.named_modules():
        if not isinstance(m, LlamaAttention):
            continue

        q_proj = m.q_proj
        k_proj = m.k_proj
        v_proj = m.v_proj

        qweights = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1)
        qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1)
        scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1)
        g_idx = torch.cat([q_proj.g_idx, k_proj.g_idx, v_proj.g_idx], dim=0)
        bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None

        qkv_layer = QuantLinear(q_proj.bits, q_proj.groupsize, q_proj.infeatures, q_proj.outfeatures + k_proj.outfeatures + v_proj.outfeatures, True if q_proj.bias is not None else False)
        qkv_layer.qweight = qweights
        qkv_layer.qzeros = qzeros
        qkv_layer.scales = scales
        qkv_layer.g_idx = g_idx
        qkv_layer.bias = bias
        # We're dropping the rotary embedding layer m.rotary_emb here. We don't need it in the triton branch.

        attn = QuantLlamaAttention(m.hidden_size, m.num_heads, qkv_layer, m.o_proj)

        if '.' in name:
            parent_name = name.rsplit('.', 1)[0]
            child_name = name[len(parent_name) + 1:]
            parent = model.get_submodule(parent_name)
        else:
            parent_name = ''
            parent = model
            child_name = name

        #print(f"Replacing {name} with quant_attn; parent: {parent_name}, child's name: {child_name}")

        setattr(parent, child_name, attn)