File size: 1,076 Bytes
64f6426 6f276f5 64f6426 6f276f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
---
license: mit
---
This is a NER model meant to be used to detect/extract citations from American legal documents.
Ignore the widget on the model card page; see below for usage.
## How to Use the Model
This model outputs token-level predictions, which should be processed as follows to obtain meaningful labels for each token:
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("ss108/legal-citation-bert")
model = AutoModelForTokenClassification.from_pretrained("ss108/legal-citation-bert")
text = "Your example text here"
inputs = tokenizer(text, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
predicted_labels = [model.config.id2label[p.item()] for p in predictions[0]]
components = []
for token, label in zip(tokens, predicted_labels):
components.append(f"{token} : {label}")
concat = " ; ".join(components)
print(concat)
|