|
--- |
|
language: |
|
- mn |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: Mongolian-xlm-roberta-base-ner-hrl |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Mongolian-xlm-roberta-base-ner-hrl |
|
|
|
This model is a fine-tuned version of [Davlan/xlm-roberta-base-ner-hrl](https://huggingface.co/Davlan/xlm-roberta-base-ner-hrl) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1224 |
|
- Precision: 0.9303 |
|
- Recall: 0.9375 |
|
- F1: 0.9339 |
|
- Accuracy: 0.9794 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.1449 | 1.0 | 477 | 0.0884 | 0.8968 | 0.9156 | 0.9061 | 0.9730 | |
|
| 0.0737 | 2.0 | 954 | 0.0840 | 0.9205 | 0.9283 | 0.9244 | 0.9771 | |
|
| 0.0503 | 3.0 | 1431 | 0.0843 | 0.9229 | 0.9312 | 0.9270 | 0.9788 | |
|
| 0.0367 | 4.0 | 1908 | 0.0959 | 0.9232 | 0.9326 | 0.9279 | 0.9781 | |
|
| 0.0268 | 5.0 | 2385 | 0.0991 | 0.9297 | 0.9357 | 0.9327 | 0.9797 | |
|
| 0.02 | 6.0 | 2862 | 0.1067 | 0.9246 | 0.9316 | 0.9281 | 0.9783 | |
|
| 0.0149 | 7.0 | 3339 | 0.1147 | 0.9265 | 0.9345 | 0.9305 | 0.9786 | |
|
| 0.0115 | 8.0 | 3816 | 0.1193 | 0.9289 | 0.9362 | 0.9325 | 0.9795 | |
|
| 0.0095 | 9.0 | 4293 | 0.1208 | 0.9304 | 0.9369 | 0.9336 | 0.9794 | |
|
| 0.008 | 10.0 | 4770 | 0.1224 | 0.9303 | 0.9375 | 0.9339 | 0.9794 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|