srglnjmb commited on
Commit
f1b74de
1 Parent(s): 345a548

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - mn
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: Mongolian-xlm-roberta-base-ner-hrl
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # Mongolian-xlm-roberta-base-ner-hrl
20
+
21
+ This model is a fine-tuned version of [Davlan/xlm-roberta-base-ner-hrl](https://huggingface.co/Davlan/xlm-roberta-base-ner-hrl) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1224
24
+ - Precision: 0.9303
25
+ - Recall: 0.9375
26
+ - F1: 0.9339
27
+ - Accuracy: 0.9794
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 32
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 10
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.1449 | 1.0 | 477 | 0.0884 | 0.8968 | 0.9156 | 0.9061 | 0.9730 |
59
+ | 0.0737 | 2.0 | 954 | 0.0840 | 0.9205 | 0.9283 | 0.9244 | 0.9771 |
60
+ | 0.0503 | 3.0 | 1431 | 0.0843 | 0.9229 | 0.9312 | 0.9270 | 0.9788 |
61
+ | 0.0367 | 4.0 | 1908 | 0.0959 | 0.9232 | 0.9326 | 0.9279 | 0.9781 |
62
+ | 0.0268 | 5.0 | 2385 | 0.0991 | 0.9297 | 0.9357 | 0.9327 | 0.9797 |
63
+ | 0.02 | 6.0 | 2862 | 0.1067 | 0.9246 | 0.9316 | 0.9281 | 0.9783 |
64
+ | 0.0149 | 7.0 | 3339 | 0.1147 | 0.9265 | 0.9345 | 0.9305 | 0.9786 |
65
+ | 0.0115 | 8.0 | 3816 | 0.1193 | 0.9289 | 0.9362 | 0.9325 | 0.9795 |
66
+ | 0.0095 | 9.0 | 4293 | 0.1208 | 0.9304 | 0.9369 | 0.9336 | 0.9794 |
67
+ | 0.008 | 10.0 | 4770 | 0.1224 | 0.9303 | 0.9375 | 0.9339 | 0.9794 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.29.2
73
+ - Pytorch 2.0.1+cu118
74
+ - Datasets 2.12.0
75
+ - Tokenizers 0.13.3