update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- mn
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: Mongolian-xlm-roberta-base-ner-hrl
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# Mongolian-xlm-roberta-base-ner-hrl
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [Davlan/xlm-roberta-base-ner-hrl](https://huggingface.co/Davlan/xlm-roberta-base-ner-hrl) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.1224
|
24 |
+
- Precision: 0.9303
|
25 |
+
- Recall: 0.9375
|
26 |
+
- F1: 0.9339
|
27 |
+
- Accuracy: 0.9794
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 32
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 0.1449 | 1.0 | 477 | 0.0884 | 0.8968 | 0.9156 | 0.9061 | 0.9730 |
|
59 |
+
| 0.0737 | 2.0 | 954 | 0.0840 | 0.9205 | 0.9283 | 0.9244 | 0.9771 |
|
60 |
+
| 0.0503 | 3.0 | 1431 | 0.0843 | 0.9229 | 0.9312 | 0.9270 | 0.9788 |
|
61 |
+
| 0.0367 | 4.0 | 1908 | 0.0959 | 0.9232 | 0.9326 | 0.9279 | 0.9781 |
|
62 |
+
| 0.0268 | 5.0 | 2385 | 0.0991 | 0.9297 | 0.9357 | 0.9327 | 0.9797 |
|
63 |
+
| 0.02 | 6.0 | 2862 | 0.1067 | 0.9246 | 0.9316 | 0.9281 | 0.9783 |
|
64 |
+
| 0.0149 | 7.0 | 3339 | 0.1147 | 0.9265 | 0.9345 | 0.9305 | 0.9786 |
|
65 |
+
| 0.0115 | 8.0 | 3816 | 0.1193 | 0.9289 | 0.9362 | 0.9325 | 0.9795 |
|
66 |
+
| 0.0095 | 9.0 | 4293 | 0.1208 | 0.9304 | 0.9369 | 0.9336 | 0.9794 |
|
67 |
+
| 0.008 | 10.0 | 4770 | 0.1224 | 0.9303 | 0.9375 | 0.9339 | 0.9794 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.29.2
|
73 |
+
- Pytorch 2.0.1+cu118
|
74 |
+
- Datasets 2.12.0
|
75 |
+
- Tokenizers 0.13.3
|