File size: 2,538 Bytes
650e23d d0fdf11 650e23d d0fdf11 058dd06 d0fdf11 058dd06 d0fdf11 058dd06 9a526db 058dd06 ac5886f 058dd06 ac5886f ab8d438 058dd06 d0fdf11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
datasets:
- squarelike/sharegpt_deepl_ko_translation
language:
- en
- ko
pipeline_tag: translation
---
# Gugugo-koen-7B-V1.1
Detail repo: [https://github.com/jwj7140/Gugugo](https://github.com/jwj7140/Gugugo)
![Gugugo](./logo.png)
**Base Model**: [Llama-2-ko-7b](https://huggingface.co/beomi/llama-2-ko-7b)
**Training Dataset**: [sharegpt_deepl_ko_translation](https://huggingface.co/datasets/squarelike/sharegpt_deepl_ko_translation).
I trained with 1x A6000 GPUs for 90 hours.
## **Prompt Template**
**KO->EN**
```
### νκ΅μ΄: {sentence}</λ>
### μμ΄:
```
**EN->KO**
```
### μμ΄: {sentence}</λ>
### νκ΅μ΄:
```
There are GPTQ and GGUF support.
[https://huggingface.co/squarelike/Gugugo-koen-7B-V1.1-GPTQ](https://huggingface.co/squarelike/Gugugo-koen-7B-V1.1-GPTQ)
[https://huggingface.co/squarelike/Gugugo-koen-7B-V1.1-GGUF](https://huggingface.co/squarelike/Gugugo-koen-7B-V1.1-GGUF)
## **Implementation Code**
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList
import torch
repo = "squarelike/Gugugo-koen-7B-V1.1"
model = AutoModelForCausalLM.from_pretrained(
repo,
load_in_4bit=True
device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained(repo)
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops = [], encounters=1):
super().__init__()
self.stops = [stop for stop in stops]
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
stop_words_ids = torch.tensor([[829, 45107, 29958], [1533, 45107, 29958], [829, 45107, 29958], [21106, 45107, 29958]]).to("cuda")
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
def gen(lan="en", x=""):
if (lan == "ko"):
prompt = f"### νκ΅μ΄: {x}</λ>\n### μμ΄:"
else:
prompt = f"### μμ΄: {x}</λ>\n### νκ΅μ΄:"
gened = model.generate(
**tokenizer(
prompt,
return_tensors='pt',
return_token_type_ids=False
).to("cuda"),
max_new_tokens=2000,
temperature=0.3,
# no_repeat_ngram_size=5,
num_beams=5,
stopping_criteria=stopping_criteria
)
return tokenizer.decode(gened[0][1:]).replace(prompt+" ", "").replace("</λ>", "")
print(gen(lan="en", x="Hello, world!"))
``` |