spow12's picture
Update README.md
046e9eb verified
metadata
library_name: transformers
license: cc-by-nc-4.0
language:
  - ko
  - en

Ko-Qwen2-7B-Instruct

Model Description

This model is a Supervised fine-tuned version of Qwen2-7B -Instruct with DeepSpeed and trl for korean.

Trained Data

  • Trained with public data and private data and Generated data (about 50k)

Usage

from transformers import TextStreamer, pipeline, AutoTokenizer, AutoModelForCausalLM

model_id = 'spow12/Ko-Qwen2-7B-Instruct'
tokenizer = AutoTokenizer.from_pretrained(model_id)
# %%
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2", 
    device_map='auto',
)
model.eval()

pipe = pipeline("conversational", model=model, tokenizer=tokenizer, device_map='auto')

streamer = TextStreamer(tokenizer)

generation_configs = dict(
    max_new_tokens=2048,
    num_return_sequences=1, 
    temperature=0.1,
    # early_stopping=True,
    repetition_penalty=1.2,
    num_beams=1,
    do_sample=True,
    top_k=20,
    top_p=0.9,
    eos_token_id=tokenizer.eos_token_id,
    pad_token_id=tokenizer.eos_token_id,
    streamer=streamer
)

sys_message = """당신은 μΉœμ ˆν•œ μ±—λ΄‡μœΌλ‘œμ„œ μƒλŒ€λ°©μ˜ μš”μ²­μ— μ΅œλŒ€ν•œ μžμ„Έν•˜κ³  μΉœμ ˆν•˜κ²Œ λ‹΅ν•΄μ•Όν•©λ‹ˆλ‹€. 
μ‚¬μš©μžκ°€ μ œκ³΅ν•˜λŠ” 정보λ₯Ό μ„Έμ‹¬ν•˜κ²Œ λΆ„μ„ν•˜μ—¬ μ‚¬μš©μžμ˜ μ˜λ„λ₯Ό μ‹ μ†ν•˜κ²Œ νŒŒμ•…ν•˜κ³  그에 따라 닡변을 μƒμ„±ν•΄μ•Όν•©λ‹ˆλ‹€.  

항상 맀우 μžμ—°μŠ€λŸ¬μš΄ ν•œκ΅­μ–΄λ‘œ μ‘λ‹΅ν•˜μ„Έμš”."""

message = [
    {
        'role': "system",
        'content': sys_message
    },
    {
        'role': 'user',
        'content': "ν˜„μž¬μ˜ κ²½μ œμƒν™©μ— λŒ€ν•΄ μ–΄λ–»κ²Œ 생각해?."
    }
]
conversation = pipe(message, **generation_configs)
conversation[-1]
<|im_start|>system
당신은 μΉœμ ˆν•œ μ±—λ΄‡μœΌλ‘œμ„œ μƒλŒ€λ°©μ˜ μš”μ²­μ— μ΅œλŒ€ν•œ μžμ„Έν•˜κ³  μΉœμ ˆν•˜κ²Œ λ‹΅ν•΄μ•Όν•©λ‹ˆλ‹€. 
μ‚¬μš©μžκ°€ μ œκ³΅ν•˜λŠ” 정보λ₯Ό μ„Έμ‹¬ν•˜κ²Œ λΆ„μ„ν•˜μ—¬ μ‚¬μš©μžμ˜ μ˜λ„λ₯Ό μ‹ μ†ν•˜κ²Œ νŒŒμ•…ν•˜κ³  그에 따라 닡변을 μƒμ„±ν•΄μ•Όν•©λ‹ˆλ‹€.  

항상 맀우 μžμ—°μŠ€λŸ¬μš΄ ν•œκ΅­μ–΄λ‘œ μ‘λ‹΅ν•˜μ„Έμš”.<|im_end|>
<|im_start|>user
ν˜„μž¬μ˜ κ²½μ œμƒν™©μ— λŒ€ν•΄ μ–΄λ–»κ²Œ 생각해?<|im_end|>
<|im_start|>assistant
μ €λŠ” 인곡지λŠ₯이기 λ•Œλ¬Έμ— ν˜„μž¬μ˜ 경제 μƒν™©μ΄λ‚˜ 개인적인 μ˜κ²¬μ„ 가지고 μžˆμ§€ μ•ŠμŠ΅λ‹ˆλ‹€. ν•˜μ§€λ§Œ, μ΅œκ·Όμ—λŠ” μ „ μ„Έκ³„μ μœΌλ‘œ κ²½κΈ°κ°€ μ–΄λ €μ›Œμ§€κ³  μžˆλŠ” μΆ”μ„Έμž…λ‹ˆλ‹€. λ§Žμ€ λ‚˜λΌλ“€μ΄ λŒ€μ²˜ν•˜κΈ° μœ„ν•œ λ‹€μ–‘ν•œ μ •μ±…κ³Ό μ‘°μΉ˜λ“€μ„ μ‹œν–‰ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€. μ΄λŸ¬ν•œ μƒν™©μ—μ„œ 각자 μžμ‹ μ˜ μ—­λŸ‰μ„ λ°œνœ˜ν•˜λ©° μ‚΄μ•„κ°€μ‹œκΈΈ λ°”λžλ‹ˆλ‹€.<|im_end|>

License

This model is licensed under the cc-by-nc-4.0. which allows others to share and adapt the model for non-commercial purposes.

Here is Original Readme.md

Qwen2-7B-Instruct

Introduction

Qwen2 is the new series of Qwen large language models. For Qwen2, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters, including a Mixture-of-Experts model. This repo contains the instruction-tuned 7B Qwen2 model.

Compared with the state-of-the-art opensource language models, including the previous released Qwen1.5, Qwen2 has generally surpassed most opensource models and demonstrated competitiveness against proprietary models across a series of benchmarks targeting for language understanding, language generation, multilingual capability, coding, mathematics, reasoning, etc.

Qwen2-7B-Instruct supports a context length of up to 131,072 tokens, enabling the processing of extensive inputs. Please refer to this section for detailed instructions on how to deploy Qwen2 for handling long texts.

For more details, please refer to our blog, GitHub, and Documentation.

Model Details

Qwen2 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.

Training details

We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.

Requirements

The code of Qwen2 has been in the latest Hugging face transformers and we advise you to install transformers>=4.37.0, or you might encounter the following error:

KeyError: 'qwen2'

Quickstart

Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.

from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen2-7B-Instruct",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct")

prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

Processing Long Texts

To handle extensive inputs exceeding 32,768 tokens, we utilize YARN, a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.

For deployment, we recommend using vLLM. You can enable the long-context capabilities by following these steps:

  1. Install vLLM: You can install vLLM by running the following command.
pip install "vllm>=0.4.3"

Or you can install vLLM from source.

  1. Configure Model Settings: After downloading the model weights, modify the config.json file by including the below snippet:

        {
            "architectures": [
                "Qwen2ForCausalLM"
            ],
            // ...
            "vocab_size": 152064,
    
            // adding the following snippets
            "rope_scaling": {
                "factor": 4.0,
                "original_max_position_embeddings": 32768,
                "type": "yarn"
            }
        }
    

    This snippet enable YARN to support longer contexts.

  2. Model Deployment: Utilize vLLM to deploy your model. For instance, you can set up an openAI-like server using the command:

    python -m vllm.entrypoints.openai.api_server --served-model-name Qwen2-7B-Instruct --model path/to/weights
    

    Then you can access the Chat API by:

    curl http://localhost:8000/v1/chat/completions \
        -H "Content-Type: application/json" \
        -d '{
        "model": "Qwen2-7B-Instruct",
        "messages": [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": "Your Long Input Here."}
        ]
        }'
    

    For further usage instructions of vLLM, please refer to our Github.

Note: Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, potentially impacting performance on shorter texts. We advise adding the rope_scaling configuration only when processing long contexts is required.

Evaluation

We briefly compare Qwen2-7B-Instruct with similar-sized instruction-tuned LLMs, including Qwen1.5-7B-Chat. The results are shown below:

Datasets Llama-3-8B-Instruct Yi-1.5-9B-Chat GLM-4-9B-Chat Qwen1.5-7B-Chat Qwen2-7B-Instruct
English
MMLU 68.4 69.5 72.4 59.5 70.5
MMLU-Pro 41.0 - - 29.1 44.1
GPQA 34.2 - - 27.8 25.3
TheroemQA 23.0 - - 14.1 25.3
MT-Bench 8.05 8.20 8.35 7.60 8.41
Coding
Humaneval 62.2 66.5 71.8 46.3 79.9
MBPP 67.9 - - 48.9 67.2
MultiPL-E 48.5 - - 27.2 59.1
Evalplus 60.9 - - 44.8 70.3
LiveCodeBench 17.3 - - 6.0 26.6
Mathematics
GSM8K 79.6 84.8 79.6 60.3 82.3
MATH 30.0 47.7 50.6 23.2 49.6
Chinese
C-Eval 45.9 - 75.6 67.3 77.2
AlignBench 6.20 6.90 7.01 6.20 7.21

Citation

If you find our work helpful, feel free to give us a cite.

@article{qwen2,
  title={Qwen2 Technical Report},
  year={2024}
}