File size: 5,155 Bytes
bcf646b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
from torch import nn


class MoE_ECGFormer(nn.Module):
    def __init__(self, configs, hparams):
        super().__init__()

        filter_sizes = [5, 9, 11]
        self.conv1 = nn.Conv1d(configs.input_channels, configs.mid_channels, kernel_size=filter_sizes[0],
                               stride=configs.stride, bias=False, padding=(filter_sizes[0] // 2))

        self.conv2 = nn.Conv1d(configs.input_channels, configs.mid_channels, kernel_size=filter_sizes[1],
                               stride=configs.stride, bias=False, padding=(filter_sizes[1] // 2))

        self.conv3 = nn.Conv1d(configs.input_channels, configs.mid_channels, kernel_size=filter_sizes[2],
                               stride=configs.stride, bias=False, padding=(filter_sizes[2] // 2))

        self.bn = nn.BatchNorm1d(configs.mid_channels)
        self.relu = nn.ReLU()
        self.maxpool = nn.MaxPool1d(kernel_size=2, stride=2, padding=1)
        self.dropout = nn.Dropout(configs.dropout)

        self.conv_block2 = nn.Sequential(
            nn.Conv1d(configs.mid_channels, configs.mid_channels * 2, kernel_size=8, stride=1, bias=False,
                      padding=4),
            nn.BatchNorm1d(configs.mid_channels * 2),
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=2, stride=2, padding=1)
        )

        self.conv_block3 = nn.Sequential(
            nn.Conv1d(configs.mid_channels * 2, configs.final_out_channels, kernel_size=8, stride=1, bias=False,
                      padding=4),
            nn.BatchNorm1d(configs.final_out_channels),
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=2, stride=2, padding=1),
        )

        self.inplanes = 128
        self.crm = self._make_layer(SEBasicBlock, 128, 3)

        # Transformer_layer
        self.encoder_layer = nn.TransformerEncoderLayer(d_model=configs.trans_dim,
                                                        nhead=configs.num_heads,
                                                        batch_first=True)
        self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=3)
        self.aap = nn.AdaptiveAvgPool1d(1)
        self.clf = nn.Linear(hparams['feature_dim'], configs.num_classes)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv1d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm1d(planes * block.expansion),
            )

        layers = [block(self.inplanes, planes, stride, downsample)]
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x_in):

        # Multi-scale Convolutions
        x1 = self.conv1(x_in)
        x2 = self.conv2(x_in)
        x3 = self.conv3(x_in)

        x_concat = torch.mean(torch.stack([x1, x2, x3], dim=2), dim=2)
        x_concat = self.dropout(self.maxpool(self.relu(self.bn(x_concat))))

        x = self.conv_block2(x_concat)
        x = self.conv_block3(x)

        # Channel Recalibration Module
        x = self.crm(x)

        # Bidirectional MoE Transformer
        x1 = self.transformer_encoder(x)
        x2 = self.transformer_encoder(torch.flip(x, [2]))
        x = x1 + x2

        x = self.aap(x)
        x_flat = x.reshape(x.size(0), -1)
        x_out = self.clf(x_flat)
        return x_out


class SELayer(nn.Module):
    def __init__(self, channel, reduction=4):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool1d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1)
        return x * y.expand_as(x)


class SEBasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None,
                 *, reduction=4):
        super(SEBasicBlock, self).__init__()
        self.conv1 = nn.Conv1d(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm1d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv1d(planes, planes, 1)
        self.bn2 = nn.BatchNorm1d(planes)
        self.se = SELayer(planes, reduction)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.se(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out