File size: 9,499 Bytes
436faa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
import comfy.model_management
import numpy as np
from enum import Enum
from . import utils

class ModelType(Enum):
    EPS = 1
    V_PREDICTION = 2

class BaseModel(torch.nn.Module):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__()

        unet_config = model_config.unet_config
        self.latent_format = model_config.latent_format
        self.model_config = model_config
        self.register_schedule(given_betas=None, beta_schedule=model_config.beta_schedule, timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
        if not unet_config.get("disable_unet_model_creation", False):
            self.diffusion_model = UNetModel(**unet_config, device=device)
        self.model_type = model_type
        self.adm_channels = unet_config.get("adm_in_channels", None)
        if self.adm_channels is None:
            self.adm_channels = 0
        print("model_type", model_type.name)
        print("adm", self.adm_channels)

    def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        if given_betas is not None:
            betas = given_betas
        else:
            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
        alphas = 1. - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end

        self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
        self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
        self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))

    def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}):
        if c_concat is not None:
            xc = torch.cat([x] + [c_concat], dim=1)
        else:
            xc = x
        context = c_crossattn
        dtype = self.get_dtype()
        xc = xc.to(dtype)
        t = t.to(dtype)
        context = context.to(dtype)
        if c_adm is not None:
            c_adm = c_adm.to(dtype)
        return self.diffusion_model(xc, t, context=context, y=c_adm, control=control, transformer_options=transformer_options).float()

    def get_dtype(self):
        return self.diffusion_model.dtype

    def is_adm(self):
        return self.adm_channels > 0

    def encode_adm(self, **kwargs):
        return None

    def load_model_weights(self, sd, unet_prefix=""):
        to_load = {}
        keys = list(sd.keys())
        for k in keys:
            if k.startswith(unet_prefix):
                to_load[k[len(unet_prefix):]] = sd.pop(k)

        m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
        if len(m) > 0:
            print("unet missing:", m)

        if len(u) > 0:
            print("unet unexpected:", u)
        del to_load
        return self

    def process_latent_in(self, latent):
        return self.latent_format.process_in(latent)

    def process_latent_out(self, latent):
        return self.latent_format.process_out(latent)

    def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
        clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
        unet_sd = self.diffusion_model.state_dict()
        unet_state_dict = {}
        for k in unet_sd:
            unet_state_dict[k] = comfy.model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k)

        unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
        vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
        if self.get_dtype() == torch.float16:
            clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16)
            vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16)

        if self.model_type == ModelType.V_PREDICTION:
            unet_state_dict["v_pred"] = torch.tensor([])

        return {**unet_state_dict, **vae_state_dict, **clip_state_dict}

    def set_inpaint(self):
        self.concat_keys = ("mask", "masked_image")

def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
    adm_inputs = []
    weights = []
    noise_aug = []
    for unclip_cond in unclip_conditioning:
        for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
            weight = unclip_cond["strength"]
            noise_augment = unclip_cond["noise_augmentation"]
            noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
            c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
            adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
            weights.append(weight)
            noise_aug.append(noise_augment)
            adm_inputs.append(adm_out)

    if len(noise_aug) > 1:
        adm_out = torch.stack(adm_inputs).sum(0)
        noise_augment = noise_augment_merge
        noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
        c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
        adm_out = torch.cat((c_adm, noise_level_emb), 1)

    return adm_out

class SD21UNCLIP(BaseModel):
    def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
        super().__init__(model_config, model_type, device=device)
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)

    def encode_adm(self, **kwargs):
        unclip_conditioning = kwargs.get("unclip_conditioning", None)
        device = kwargs["device"]
        if unclip_conditioning is None:
            return torch.zeros((1, self.adm_channels))
        else:
            return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05))

def sdxl_pooled(args, noise_augmentor):
    if "unclip_conditioning" in args:
        return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor)[:,:1280]
    else:
        return args["pooled_output"]

class SDXLRefiner(BaseModel):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
        self.embedder = Timestep(256)
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})

    def encode_adm(self, **kwargs):
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)

        if kwargs.get("prompt_type", "") == "negative":
            aesthetic_score = kwargs.get("aesthetic_score", 2.5)
        else:
            aesthetic_score = kwargs.get("aesthetic_score", 6)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
        out.append(self.embedder(torch.Tensor([width])))
        out.append(self.embedder(torch.Tensor([crop_h])))
        out.append(self.embedder(torch.Tensor([crop_w])))
        out.append(self.embedder(torch.Tensor([aesthetic_score])))
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)

class SDXL(BaseModel):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
        self.embedder = Timestep(256)
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})

    def encode_adm(self, **kwargs):
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)
        target_width = kwargs.get("target_width", width)
        target_height = kwargs.get("target_height", height)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
        out.append(self.embedder(torch.Tensor([width])))
        out.append(self.embedder(torch.Tensor([crop_h])))
        out.append(self.embedder(torch.Tensor([crop_w])))
        out.append(self.embedder(torch.Tensor([target_height])))
        out.append(self.embedder(torch.Tensor([target_width])))
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)