File size: 3,927 Bytes
5a9f979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2593c7e
5a9f979
 
ea2d672
 
 
5a9f979
 
 
 
 
 
6a4d456
5a9f979
280a343
 
 
5a9f979
 
 
 
 
 
 
 
 
 
497ab61
5a9f979
 
 
 
 
 
 
 
 
be9631c
 
5a9f979
be9631c
5a9f979
 
fe7840e
 
 
2593c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b6649c
 
 
5a9f979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecc8fea
5a9f979
 
b334a65
 
 
ecc8fea
b334a65
ecc8fea
b334a65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
language: "en"
thumbnail:
tags:
- embeddings
- Speaker
- Verification
- Identification
- pytorch
- xvectors
- TDNN
license: "apache-2.0"
datasets:
- voxceleb
metrics:
- EER
- min_dct
---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# Speaker Verification with xvector embeddings on Voxceleb

This repository provides all the necessary tools to extract speaker embeddings with a pretrained TDNN model using SpeechBrain. 
The system is trained on Voxceleb 1+ Voxceleb2 training data. 

For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The given model performance on Voxceleb1-test set (Cleaned) is:

| Release | EER(%) 
|:-------------:|:--------------:|
| 05-03-21 | 3.2 | 


## Pipeline description
This system is composed of a TDNN model coupled with statistical pooling. The system is trained with Categorical Cross-Entropy Loss.  

## Install SpeechBrain

First of all, please install SpeechBrain with the following command:

```
pip install speechbrain
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

### Compute your speaker embeddings

```python
import torchaudio
from speechbrain.pretrained import EncoderClassifier
classifier = EncoderClassifier.from_hparams(source="speechbrain/spkrec-xvect-voxceleb", savedir="pretrained_models/spkrec-xvect-voxceleb")
signal, fs =torchaudio.load('samples/audio_samples/example1.wav')
embeddings = classifier.encode_batch(signal)
```

### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training
The model was trained with SpeechBrain (aa018540).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```
cd  recipes/VoxCeleb/SpeakerRec/
python train_speaker_embeddings.py hparams/train_x_vectors.yaml --data_folder=your_data_folder
```

You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1RtCBJ3O8iOCkFrJItCKT9oL-Q1MNCwMH?usp=sharing).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

#### Referencing xvectors
```@inproceedings{DBLP:conf/odyssey/SnyderGMSPK18,
  author    = {David Snyder and
               Daniel Garcia{-}Romero and
               Alan McCree and
               Gregory Sell and
               Daniel Povey and
               Sanjeev Khudanpur},
  title     = {Spoken Language Recognition using X-vectors},
  booktitle = {Odyssey 2018},
  pages     = {105--111},
  year      = {2018},
}
```


#### Referencing SpeechBrain

```
@misc{SB2021,
    author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
    title = {SpeechBrain},
    year = {2021},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/speechbrain/speechbrain}},
  }
```

#### About SpeechBrain
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.

Website: https://speechbrain.github.io/

GitHub: https://github.com/speechbrain/speechbrain