File size: 3,959 Bytes
c85db8d
 
 
 
99b112b
c85db8d
 
 
 
 
f1e3c9f
c85db8d
 
 
 
 
 
d5512ec
 
c85db8d
 
 
adcecd9
 
 
36a88b6
c85db8d
 
a1d16fe
c85db8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8fb79c
c85db8d
 
be3e8ce
c85db8d
 
 
 
 
 
f8081a9
 
c85db8d
c106fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c74ddb
 
 
c85db8d
 
6ec0f0b
 
 
 
 
 
 
 
 
 
bbbfa22
c85db8d
 
6ec0f0b
c85db8d
 
 
 
 
 
18e41d9
 
6ec0f0b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
language: "en"
thumbnail:
tags:
- audio-source-separation
- Source Separation
- Speech Separation
- WHAM!
- SepFormer
- Transformer 
- pytorch
license: "apache-2.0"
datasets:
- WHAMR!
metrics:
- SI-SNRi
- SDRi
pipeline:
- audio source separation

---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# SepFormer trained on WHAMR! (16k sampling frequency)
This repository provides all the necessary tools to perform audio source separation with a [SepFormer](https://arxiv.org/abs/2010.13154v2) model, implemented with SpeechBrain, and pretrained on [WHAMR!](http://wham.whisper.ai/) dataset with 16k sampling frequency, which is basically a version of WSJ0-Mix dataset with environmental noise and reverberation in 16k. For a better experience we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The given model performance is 13.5 dB SI-SNRi on the test set of WHAMR! dataset.


| Release | Test-Set SI-SNRi | Test-Set SDRi |
|:-------------:|:--------------:|:--------------:|
| 30-03-21 | 13.5 dB | 13.0 dB |


## Install SpeechBrain

First of all, please install SpeechBrain with the following command:

```
pip install speechbrain
```

Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io).

### Perform source separation on your own audio file

```python
from speechbrain.pretrained import SepformerSeparation as separator
import torchaudio

model = separator.from_hparams(source="speechbrain/sepformer-whamr16k", savedir='pretrained_models/sepformer-whamr16k')

# for custom file, change path
est_sources = model.separate_file(path='speechbrain/sepformer-whamr16k/test_mixture16k.wav') 

torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 16000)
torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 16000)


```
### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training
The model was trained with SpeechBrain (fc2eabb7).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```
cd  recipes/WHAMandWHAMR/separation/
python train.py hparams/sepformer-whamr.yaml --data_folder=your_data_folder --sample_rate=16000
```

You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1QiQhp1vi5t4UfNpNETA48_OmPiXnUy8O?usp=sharing).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

#### Referencing SpeechBrain

```bibtex
@misc{speechbrain,
  title={SpeechBrain: A General-Purpose Speech Toolkit},
  author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
  year={2021},
  eprint={2106.04624},
  archivePrefix={arXiv},
  primaryClass={eess.AS}
}
```


#### Referencing SepFormer
```bibtex
@inproceedings{subakan2021attention,
      title={Attention is All You Need in Speech Separation}, 
      author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong},
      year={2021},
      booktitle={ICASSP 2021}
}
```

# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/