File size: 5,298 Bytes
ef4387c
a2ce4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac887e1
ef4387c
a2ce4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845a974
a2ce4ef
 
 
 
4ef78b3
a2ce4ef
 
 
 
 
 
 
 
 
 
2e73ddf
 
 
 
a2ce4ef
 
 
 
 
2e73ddf
a2ce4ef
 
f9fd4bc
3e60708
 
a2ce4ef
 
 
06fbb52
 
 
 
 
 
 
 
2e73ddf
 
 
 
 
 
 
 
 
 
 
a2ce4ef
845a974
a2ce4ef
 
 
 
 
 
845a974
a2ce4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e26b6d
a2ce4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
language: "en"
thumbnail:
tags:
- audio-classification
- speechbrain
- Emotion
- Diarization
- wavlm
- pytorch
license: "apache-2.0"
datasets:
- ZaionEmotionDataset
- iemocap
- ravdess
- jl-corpus
- esd
- emov-db
metrics:
- EDER
inference: false
---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# Emotion Diarization with WavLM Large on 5 popular emotional datasets.

This repository provides all the necessary tools to perform speech emotion diarization with a fine-tuned wavlm (large) model using SpeechBrain.

The model is trained on concatenated audios and tested on [ZaionEmotionDataset](https://zaion.ai/en/resources/zaion-lab-blog/zaion-emotion-dataset/). The metric is Emotion Diarization Error Rate (EDER). For more details please check the [paper link](https://arxiv.org/pdf/2306.12991.pdf).


For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The model performance on ZED (test set) is:

| Release | EDER(%) | 
|:-------------:|:--------------:|
| 05-07-23 | 29.7 (Avg: 30.2) | 


## Pipeline description

This system is composed of a wavlm encoder a downstream frame-wise classifier. The task aims to predict the correct emotion components and their boundaries within a speech recording. For now, the model was trained with audios that contain only 1 non-neutral emotion event.

The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *diarize_file* if needed.


## Install SpeechBrain

First of all, please install the **development** version of SpeechBrain with the following command:

```
git clone https://github.com/speechbrain/speechbrain.git
cd speechbrain
pip install -r requirements.txt
pip install --editable .
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

### Perform Speech Emotion Diarization 

```python
from speechbrain.inference.diarization import Speech_Emotion_Diarization
classifier = Speech_Emotion_Diarization.from_hparams(
    source="speechbrain/emotion-diarization-wavlm-large"
)
diary = classifier.diarize_file("speechbrain/emotion-diarization-wavlm-large/example.wav")
print(diary)

# {
#    'speechbrain/emotion-diarization-wavlm-large/example.wav':
#       [
#          {'start': 0.0, 'end': 1.94, 'emotion': 'n'}, # n -> neutral
#          {'start': 1.94, 'end': 4.48, 'emotion': 'h'} # h -> happy
#       ]
# }

diary = classifier.diarize_file("speechbrain/emotion-diarization-wavlm-large/example_sad.wav")
print(diary)

# {
#    'speechbrain/emotion-diarization-wavlm-large/example_sad.wav':
#        [
#          {'start': 0.0, 'end': 3.54, 'emotion': 's'}, # s -> sad
#          {'start': 3.54, 'end': 5.26, 'emotion': 'n'} # n -> neutral
#        ]
# }
```
The output will contain a dictionary of emotion components and their boundaries.

### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training
The model was trained with SpeechBrain (aa018540).
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```
cd  recipes/ZaionEmotionDataset/emotion_diarization
python train.py hparams/train.yaml --zed_folder /path/to/ZED --emovdb_folder /path/to/EmoV-DB --esd_folder /path/to/ESD --iemocap_folder /path/to/IEMOCAP --jlcorpus_folder /path/to/JL_corpus --ravdess_folder /path/to/RAVDESS
```

You can find our training results (models, logs, etc) [here](https://www.dropbox.com/sh/woudm1v31a7vyp5/AADAMxpQOXaxf8E_1hX202GJa?dl=0).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

# **About Speech Emotion Diarization/Zaion Emotion Dataset**

```bibtex
@article{wang2023speech,
  title={Speech Emotion Diarization: Which Emotion Appears When?},
  author={Wang, Yingzhi and Ravanelli, Mirco and Nfissi, Alaa and Yacoubi, Alya},
  journal={arXiv preprint arXiv:2306.12991},
  year={2023}
}
```

# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.

```bibtex
@misc{speechbrain,
  title={{SpeechBrain}: A General-Purpose Speech Toolkit},
  author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
  year={2021},
  eprint={2106.04624},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  note={arXiv:2106.04624}
}
```

# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/