File size: 4,991 Bytes
e8b63e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
916c9ff
 
e8b63e8
 
916c9ff
3fec198
e8b63e8
 
 
 
 
 
3fec198
e8b63e8
 
 
 
 
 
 
 
 
916c9ff
e8b63e8
916c9ff
e8b63e8
 
 
 
 
 
 
916c9ff
 
e8b63e8
916c9ff
 
e8b63e8
 
916c9ff
e8b63e8
 
 
 
 
 
 
 
916c9ff
 
 
 
e8b63e8
 
 
 
 
 
 
 
 
2857446
 
 
 
 
 
bcf56f7
2857446
 
 
 
bcf56f7
56c7c0e
2857446
bcf56f7
2857446
 
56c7c0e
2857446
e8b63e8
 
 
 
 
 
 
 
 
 
 
 
457789e
e8b63e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e5941e
 
 
 
 
 
457789e
9e5941e
 
0a69b53
da3c41d
e8b63e8
da3c41d
e8b63e8
 
 
2340515
bf677fa
 
e8b63e8
 
9e5941e
 
e8b63e8
 
 
 
 
457789e
e8b63e8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# ############################################################################
# Model: E2E ASR with Transformer
# Encoder: Transformer Encoder
# Decoder: Transformer Decoder + (CTC/ATT joint) beamsearch + TransformerLM
# Tokens: unigram
# losses: CTC + KLdiv (Label Smoothing loss)
# Training: Librispeech 960h
# Authors:  Jianyuan Zhong, Titouan Parcollet 2021
# ############################################################################

# Feature parameters
sample_rate: 16000
n_fft: 400
n_mels: 80

####################### Model parameters ###########################
# Transformer
d_model: 512
nhead: 4
num_encoder_layers: 12
num_decoder_layers: 6
d_ffn: 2048
transformer_dropout: 0.1
activation: !name:torch.nn.GELU
output_neurons: 5000
vocab_size: 5000

# Outputs
blank_index: 0
label_smoothing: 0.0
pad_index: 0
bos_index: 1
eos_index: 2

# Decoding parameters
min_decode_ratio: 0.0
max_decode_ratio: 1.0
valid_search_interval: 10
valid_beam_size: 10
test_beam_size: 66
lm_weight: 0.60
ctc_weight_decode: 0.40

############################## models ################################

CNN: !new:speechbrain.lobes.models.convolution.ConvolutionFrontEnd
    input_shape: (8, 10, 80)
    num_blocks: 3
    num_layers_per_block: 1
    out_channels: (64, 64, 64)
    kernel_sizes: (5, 5, 1)
    strides: (2, 2, 1)
    residuals: (False, False, True)
    norm: !name:speechbrain.nnet.normalization.LayerNorm

Transformer: !new:speechbrain.lobes.models.transformer.TransformerASR.TransformerASR
    input_size: 1280
    tgt_vocab: !ref <output_neurons>
    d_model: !ref <d_model>
    nhead: !ref <nhead>
    num_encoder_layers: !ref <num_encoder_layers>
    num_decoder_layers: !ref <num_decoder_layers>
    d_ffn: !ref <d_ffn>
    dropout: !ref <transformer_dropout>
    activation: !ref <activation>
    encoder_module: transformer
    attention_type: regularMHA
    normalize_before: True
    causal: False

ctc_lin: !new:speechbrain.nnet.linear.Linear
    input_size: !ref <d_model>
    n_neurons: !ref <output_neurons>

seq_lin: !new:speechbrain.nnet.linear.Linear
    input_size: !ref <d_model>
    n_neurons: !ref <output_neurons>

# Scorer
ctc_scorer: !new:speechbrain.decoders.scorer.CTCScorer
    eos_index: !ref <eos_index>
    blank_index: !ref <blank_index>
    ctc_fc: !ref <ctc_lin>

transformerlm_scorer: !new:speechbrain.decoders.scorer.TransformerLMScorer
   language_model: !ref <lm_model>
   temperature: 1.15

scorer: !new:speechbrain.decoders.scorer.ScorerBuilder
   full_scorers: [!ref <transformerlm_scorer>,
                  !ref <ctc_scorer>]
   weights:
      transformerlm: !ref <lm_weight>
      ctc: !ref <ctc_weight_decode>
      
decoder: !new:speechbrain.decoders.S2STransformerBeamSearcher
    modules: [!ref <Transformer>, !ref <seq_lin>]
    bos_index: !ref <bos_index>
    eos_index: !ref <eos_index>
    min_decode_ratio: !ref <min_decode_ratio>
    max_decode_ratio: !ref <max_decode_ratio>
    beam_size: !ref <test_beam_size>
    temperature: 1.15
    using_eos_threshold: False
    length_normalization: True

log_softmax: !new:torch.nn.LogSoftmax
    dim: -1

normalizer: !new:speechbrain.processing.features.InputNormalization
    norm_type: global

compute_features: !new:speechbrain.lobes.features.Fbank
    sample_rate: !ref <sample_rate>
    n_fft: !ref <n_fft>
    n_mels: !ref <n_mels>

# This is the Transformer LM that is used according to the Huggingface repository
# Visit the HuggingFace model corresponding to the pretrained_lm_tokenizer_path
# For more details about the model!
# NB: It has to match the pre-trained TransformerLM!!
lm_model: !new:speechbrain.lobes.models.transformer.TransformerLM.TransformerLM
    vocab: 5000
    d_model: 768
    nhead: 12
    num_encoder_layers: 12
    num_decoder_layers: 0
    d_ffn: 3072
    dropout: 0.0
    activation: !name:torch.nn.GELU
    normalize_before: False

tokenizer: !new:sentencepiece.SentencePieceProcessor

Tencoder: !new:speechbrain.lobes.models.transformer.TransformerASR.EncoderWrapper
    transformer: !ref <Transformer>

encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
    input_shape: [null, null, !ref <n_mels>]
    compute_features: !ref <compute_features>
    normalize: !ref <normalizer>
    cnn: !ref <CNN>
    transformer_encoder: !ref <Tencoder>

# Models
asr_model: !new:torch.nn.ModuleList
    - [!ref <CNN>, !ref <Transformer>, !ref <seq_lin>, !ref <ctc_lin>]

modules:
   compute_features: !ref <compute_features>
   normalizer: !ref <normalizer>
   pre_transformer: !ref <CNN>
   transformer: !ref <Transformer>
   asr_model: !ref <asr_model>
   lm_model: !ref <lm_model>
   encoder: !ref <encoder>
   decoder: !ref <decoder>

# The pretrainer allows a mapping between pretrained files and instances that
# are declared in the yaml.
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
   loadables:
      normalizer: !ref <normalizer>
      asr: !ref <asr_model>
      lm: !ref <lm_model>
      tokenizer: !ref <tokenizer>