File size: 3,937 Bytes
829dfcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# ################################
# Model: Transducer ASR
# Augmentation: SpecAugment
# Authors: Pooneh Mousavi 2023
# ################################
# Feature parameters (FBANKS etc)
sample_rate: 16000
n_fft: 400
n_mels: 80

# Model parameters
activation: !name:torch.nn.LeakyReLU
dropout: 0.15
cnn_blocks: 3
cnn_channels: (128, 200, 256)
inter_layer_pooling_size: (2, 2, 2)
cnn_kernelsize: (3, 3)
time_pooling_size: 4
rnn_class: !name:speechbrain.nnet.RNN.LSTM
rnn_layers: 5
rnn_neurons: 1024
rnn_bidirectional: True
dnn_blocks: 2
dnn_neurons: 1024
dec_neurons: 1024
joint_dim: 1024

# Outputs
output_neurons: 1000  # BPE size, index(blank/eos/bos) = 0
# transducer_beam_search : True
# Decoding parameters
# Be sure that the bos and eos index match with the BPEs ones
blank_index: 0
bos_index: 0
eos_index: 0

min_decode_ratio: 0.0
max_decode_ratio: 1.0
beam_size: 4
nbest: 1
# by default {state,expand}_beam = 2.3 as mention in paper
# https://arxiv.org/abs/1904.02619
state_beam: 2.3
expand_beam: 2.3
transducer_beam_search: True


normalizer: !new:speechbrain.processing.features.InputNormalization
    norm_type: global

compute_features: !new:speechbrain.lobes.features.Fbank
    sample_rate: !ref <sample_rate>
    n_fft: !ref <n_fft>
    n_mels: !ref <n_mels>

enc: !new:speechbrain.lobes.models.CRDNN.CRDNN
    input_shape: [null, null, !ref <n_mels>]
    activation: !ref <activation>
    dropout: !ref <dropout>
    cnn_blocks: !ref <cnn_blocks>
    cnn_channels: !ref <cnn_channels>
    cnn_kernelsize: !ref <cnn_kernelsize>
    inter_layer_pooling_size: !ref <inter_layer_pooling_size>
    time_pooling: True
    using_2d_pooling: False
    time_pooling_size: !ref <time_pooling_size>
    rnn_class: !ref <rnn_class>
    rnn_layers: !ref <rnn_layers>
    rnn_neurons: !ref <rnn_neurons>
    rnn_bidirectional: !ref <rnn_bidirectional>
    rnn_re_init: True
    dnn_blocks: !ref <dnn_blocks>
    dnn_neurons: !ref <dnn_neurons>

enc_lin: !new:speechbrain.nnet.linear.Linear
   input_size: !ref <dnn_neurons>
   n_neurons: !ref <joint_dim>

emb: !new:speechbrain.nnet.embedding.Embedding
    num_embeddings: !ref <output_neurons>
    consider_as_one_hot: True
    blank_id: !ref <blank_index>

dec: !new:speechbrain.nnet.RNN.GRU
   input_shape: [null, null, !ref <output_neurons> - 1]
   hidden_size: !ref <dec_neurons>
   num_layers: 1
   re_init: True

# For MTL with LM over the decoder
dec_lin: !new:speechbrain.nnet.linear.Linear
   input_size: !ref <dec_neurons>
   n_neurons: !ref <joint_dim>
   bias: False

Tjoint: !new:speechbrain.nnet.transducer.transducer_joint.Transducer_joint
   joint: sum # joint [sum | concat]
   nonlinearity: !ref <activation>

transducer_lin: !new:speechbrain.nnet.linear.Linear
   input_size: !ref <joint_dim>
   n_neurons: !ref <output_neurons>
   bias: False

log_softmax: !new:speechbrain.nnet.activations.Softmax
    apply_log: True

asr_model: !new:torch.nn.ModuleList
   - [!ref <enc>, !ref <emb>, !ref <dec>, !ref <transducer_lin>]



tokenizer: !new:sentencepiece.SentencePieceProcessor
# We compose the inference (encoder) pipeline.
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
    input_shape: [null, null, !ref <n_mels>]
    compute_features: !ref <compute_features>
    normalize: !ref <normalizer>
    model: !ref <enc>

decoder: !new:speechbrain.decoders.transducer.TransducerBeamSearcher
   decode_network_lst: [!ref <emb>, !ref <dec>]
   tjoint: !ref <Tjoint>
   classifier_network: [!ref <transducer_lin>]
   blank_id: !ref <blank_index>
   beam_size: !ref <beam_size>
   nbest: !ref <nbest>
   state_beam: !ref <state_beam>
   expand_beam: !ref <expand_beam>

modules:
    normalizer: !ref <normalizer>
    encoder: !ref <encoder>
    decoder: !ref <decoder>

pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
    loadables:
        normalizer: !ref <normalizer>
        asr: !ref <asr_model>
        tokenizer: !ref <tokenizer>