ja_core_news_md / README.md
adrianeboyd's picture
Update spaCy pipeline
0e768a3
|
raw
history blame
4.13 kB
metadata
tags:
  - spacy
  - token-classification
language:
  - ja
license: cc-by-sa-4.0
model-index:
  - name: ja_core_news_md
    results:
      - task:
          name: NER
          type: token-classification
        metrics:
          - name: NER Precision
            type: precision
            value: 0.7266576455
          - name: NER Recall
            type: recall
            value: 0.6754716981
          - name: NER F Score
            type: f_score
            value: 0.7001303781
      - task:
          name: TAG
          type: token-classification
        metrics:
          - name: TAG (XPOS) Accuracy
            type: accuracy
            value: 0.9713282143
      - task:
          name: POS
          type: token-classification
        metrics:
          - name: POS (UPOS) Accuracy
            type: accuracy
            value: 0.9712018326
      - task:
          name: MORPH
          type: token-classification
        metrics:
          - name: Morph (UFeats) Accuracy
            type: accuracy
            value: 0
      - task:
          name: LEMMA
          type: token-classification
        metrics:
          - name: Lemma Accuracy
            type: accuracy
            value: 0.9670499959
      - task:
          name: UNLABELED_DEPENDENCIES
          type: token-classification
        metrics:
          - name: Unlabeled Attachment Score (UAS)
            type: f_score
            value: 0.9221346544
      - task:
          name: LABELED_DEPENDENCIES
          type: token-classification
        metrics:
          - name: Labeled Attachment Score (LAS)
            type: f_score
            value: 0.9092381767
      - task:
          name: SENTS
          type: token-classification
        metrics:
          - name: Sentences F-Score
            type: f_score
            value: 0.9696376102

Details: https://spacy.io/models/ja#ja_core_news_md

Japanese pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler.

Feature Description
Name ja_core_news_md
Version 3.7.0
spaCy >=3.7.0,<3.8.0
Default Pipeline tok2vec, morphologizer, parser, attribute_ruler, ner
Components tok2vec, morphologizer, parser, senter, attribute_ruler, ner
Vectors 480443 keys, 20000 unique vectors (300 dimensions)
Sources UD Japanese GSD v2.8 (Omura, Mai; Miyao, Yusuke; Kanayama, Hiroshi; Matsuda, Hiroshi; Wakasa, Aya; Yamashita, Kayo; Asahara, Masayuki; Tanaka, Takaaki; Murawaki, Yugo; Matsumoto, Yuji; Mori, Shinsuke; Uematsu, Sumire; McDonald, Ryan; Nivre, Joakim; Zeman, Daniel)
UD Japanese GSD v2.8 NER (Megagon Labs Tokyo)
chiVe: Japanese Word Embedding with Sudachi & NWJC (chive-1.1-mc90-500k) (Works Applications)
License CC BY-SA 4.0
Author Explosion

Label Scheme

View label scheme (65 labels for 3 components)
Component Labels
morphologizer POS=NOUN, POS=ADP, POS=VERB, POS=SCONJ, POS=AUX, POS=PUNCT, POS=PART, POS=DET, POS=NUM, POS=ADV, POS=PRON, POS=ADJ, POS=PROPN, POS=CCONJ, POS=SYM, POS=NOUN|Polarity=Neg, POS=AUX|Polarity=Neg, POS=SPACE, POS=INTJ, POS=SCONJ|Polarity=Neg
parser ROOT, acl, advcl, advmod, amod, aux, case, cc, ccomp, compound, cop, csubj, dep, det, dislocated, fixed, mark, nmod, nsubj, nummod, obj, obl, punct
ner CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, MOVEMENT, NORP, ORDINAL, ORG, PERCENT, PERSON, PET_NAME, PHONE, PRODUCT, QUANTITY, TIME, TITLE_AFFIX, WORK_OF_ART

Accuracy

Type Score
TOKEN_ACC 99.37
TOKEN_P 97.64
TOKEN_R 97.88
TOKEN_F 97.76
POS_ACC 97.12
MORPH_ACC 0.00
MORPH_MICRO_P 34.01
MORPH_MICRO_R 98.04
MORPH_MICRO_F 50.51
SENTS_P 96.30
SENTS_R 97.63
SENTS_F 96.96
DEP_UAS 92.21
DEP_LAS 90.92
TAG_ACC 97.13
LEMMA_ACC 96.70
ENTS_P 72.67
ENTS_R 67.55
ENTS_F 70.01