File size: 13,040 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import datetime
import json
import traceback

from flask import request
from flask_login import login_required, current_user
from elasticsearch_dsl import Q

from rag.app.qa import rmPrefix, beAdoc
from rag.nlp import search, rag_tokenizer, keyword_extraction
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils import rmSpace
from api.db import LLMType, ParserType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService
from api.db.services.user_service import UserTenantService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.db.services.document_service import DocumentService
from api.settings import RetCode, retrievaler, kg_retrievaler
from api.utils.api_utils import get_json_result
import hashlib
import re


@manager.route('/list', methods=['POST'])
@login_required
@validate_request("doc_id")
def list_chunk():
    req = request.json
    doc_id = req["doc_id"]
    page = int(req.get("page", 1))
    size = int(req.get("size", 30))
    question = req.get("keywords", "")
    try:
        tenant_id = DocumentService.get_tenant_id(req["doc_id"])
        if not tenant_id:
            return get_data_error_result(retmsg="Tenant not found!")
        e, doc = DocumentService.get_by_id(doc_id)
        if not e:
            return get_data_error_result(retmsg="Document not found!")
        query = {
            "doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
        }
        if "available_int" in req:
            query["available_int"] = int(req["available_int"])
        sres = retrievaler.search(query, search.index_name(tenant_id))
        res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
        for id in sres.ids:
            d = {
                "chunk_id": id,
                "content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
                    id].get(
                    "content_with_weight", ""),
                "doc_id": sres.field[id]["doc_id"],
                "docnm_kwd": sres.field[id]["docnm_kwd"],
                "important_kwd": sres.field[id].get("important_kwd", []),
                "img_id": sres.field[id].get("img_id", ""),
                "available_int": sres.field[id].get("available_int", 1),
                "positions": sres.field[id].get("position_int", "").split("\t")
            }
            if len(d["positions"]) % 5 == 0:
                poss = []
                for i in range(0, len(d["positions"]), 5):
                    poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
                                 float(d["positions"][i + 3]), float(d["positions"][i + 4])])
                d["positions"] = poss
            res["chunks"].append(d)
        return get_json_result(data=res)
    except Exception as e:
        if str(e).find("not_found") > 0:
            return get_json_result(data=False, retmsg=f'No chunk found!',
                                   retcode=RetCode.DATA_ERROR)
        return server_error_response(e)


@manager.route('/get', methods=['GET'])
@login_required
def get():
    chunk_id = request.args["chunk_id"]
    try:
        tenants = UserTenantService.query(user_id=current_user.id)
        if not tenants:
            return get_data_error_result(retmsg="Tenant not found!")
        res = ELASTICSEARCH.get(
            chunk_id, search.index_name(
                tenants[0].tenant_id))
        if not res.get("found"):
            return server_error_response("Chunk not found")
        id = res["_id"]
        res = res["_source"]
        res["chunk_id"] = id
        k = []
        for n in res.keys():
            if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
                k.append(n)
        for n in k:
            del res[n]

        return get_json_result(data=res)
    except Exception as e:
        if str(e).find("NotFoundError") >= 0:
            return get_json_result(data=False, retmsg=f'Chunk not found!',
                                   retcode=RetCode.DATA_ERROR)
        return server_error_response(e)


@manager.route('/set', methods=['POST'])
@login_required
@validate_request("doc_id", "chunk_id", "content_with_weight",

                  "important_kwd")
def set():
    req = request.json
    d = {
        "id": req["chunk_id"],
        "content_with_weight": req["content_with_weight"]}
    d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
    d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
    d["important_kwd"] = req["important_kwd"]
    d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
    if "available_int" in req:
        d["available_int"] = req["available_int"]

    try:
        tenant_id = DocumentService.get_tenant_id(req["doc_id"])
        if not tenant_id:
            return get_data_error_result(retmsg="Tenant not found!")

        embd_id = DocumentService.get_embd_id(req["doc_id"])
        embd_mdl = TenantLLMService.model_instance(
            tenant_id, LLMType.EMBEDDING.value, embd_id)

        e, doc = DocumentService.get_by_id(req["doc_id"])
        if not e:
            return get_data_error_result(retmsg="Document not found!")

        if doc.parser_id == ParserType.QA:
            arr = [
                t for t in re.split(
                    r"[\n\t]",
                    req["content_with_weight"]) if len(t) > 1]
            if len(arr) != 2:
                return get_data_error_result(
                    retmsg="Q&A must be separated by TAB/ENTER key.")
            q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
            d = beAdoc(d, arr[0], arr[1], not any(
                [rag_tokenizer.is_chinese(t) for t in q + a]))

        v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
        v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
        d["q_%d_vec" % len(v)] = v.tolist()
        ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
        return get_json_result(data=True)
    except Exception as e:
        return server_error_response(e)


@manager.route('/switch', methods=['POST'])
@login_required
@validate_request("chunk_ids", "available_int", "doc_id")
def switch():
    req = request.json
    try:
        tenant_id = DocumentService.get_tenant_id(req["doc_id"])
        if not tenant_id:
            return get_data_error_result(retmsg="Tenant not found!")
        if not ELASTICSEARCH.upsert([{"id": i, "available_int": int(req["available_int"])} for i in req["chunk_ids"]],
                                    search.index_name(tenant_id)):
            return get_data_error_result(retmsg="Index updating failure")
        return get_json_result(data=True)
    except Exception as e:
        return server_error_response(e)


@manager.route('/rm', methods=['POST'])
@login_required
@validate_request("chunk_ids", "doc_id")
def rm():
    req = request.json
    try:
        if not ELASTICSEARCH.deleteByQuery(
                Q("ids", values=req["chunk_ids"]), search.index_name(current_user.id)):
            return get_data_error_result(retmsg="Index updating failure")
        e, doc = DocumentService.get_by_id(req["doc_id"])
        if not e:
            return get_data_error_result(retmsg="Document not found!")
        deleted_chunk_ids = req["chunk_ids"]
        chunk_number = len(deleted_chunk_ids)
        DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
        return get_json_result(data=True)
    except Exception as e:
        return server_error_response(e)


@manager.route('/create', methods=['POST'])
@login_required
@validate_request("doc_id", "content_with_weight")
def create():
    req = request.json
    md5 = hashlib.md5()
    md5.update((req["content_with_weight"] + req["doc_id"]).encode("utf-8"))
    chunck_id = md5.hexdigest()
    d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(req["content_with_weight"]),
         "content_with_weight": req["content_with_weight"]}
    d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
    d["important_kwd"] = req.get("important_kwd", [])
    d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_kwd", [])))
    d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
    d["create_timestamp_flt"] = datetime.datetime.now().timestamp()

    try:
        e, doc = DocumentService.get_by_id(req["doc_id"])
        if not e:
            return get_data_error_result(retmsg="Document not found!")
        d["kb_id"] = [doc.kb_id]
        d["docnm_kwd"] = doc.name
        d["doc_id"] = doc.id

        tenant_id = DocumentService.get_tenant_id(req["doc_id"])
        if not tenant_id:
            return get_data_error_result(retmsg="Tenant not found!")

        embd_id = DocumentService.get_embd_id(req["doc_id"])
        embd_mdl = TenantLLMService.model_instance(
            tenant_id, LLMType.EMBEDDING.value, embd_id)

        v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
        v = 0.1 * v[0] + 0.9 * v[1]
        d["q_%d_vec" % len(v)] = v.tolist()
        ELASTICSEARCH.upsert([d], search.index_name(tenant_id))

        DocumentService.increment_chunk_num(
            doc.id, doc.kb_id, c, 1, 0)
        return get_json_result(data={"chunk_id": chunck_id})
    except Exception as e:
        return server_error_response(e)


@manager.route('/retrieval_test', methods=['POST'])
@login_required
@validate_request("kb_id", "question")
def retrieval_test():
    req = request.json
    page = int(req.get("page", 1))
    size = int(req.get("size", 30))
    question = req["question"]
    kb_id = req["kb_id"]
    doc_ids = req.get("doc_ids", [])
    similarity_threshold = float(req.get("similarity_threshold", 0.2))
    vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
    top = int(req.get("top_k", 1024))
    try:
        e, kb = KnowledgebaseService.get_by_id(kb_id)
        if not e:
            return get_data_error_result(retmsg="Knowledgebase not found!")

        embd_mdl = TenantLLMService.model_instance(
            kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)

        rerank_mdl = None
        if req.get("rerank_id"):
            rerank_mdl = TenantLLMService.model_instance(
                kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])

        if req.get("keyword", False):
            chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
            question += keyword_extraction(chat_mdl, question)

        retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler
        ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size,
                               similarity_threshold, vector_similarity_weight, top,
                               doc_ids, rerank_mdl=rerank_mdl)
        for c in ranks["chunks"]:
            if "vector" in c:
                del c["vector"]

        return get_json_result(data=ranks)
    except Exception as e:
        if str(e).find("not_found") > 0:
            return get_json_result(data=False, retmsg=f'No chunk found! Check the chunk status please!',
                                   retcode=RetCode.DATA_ERROR)
        return server_error_response(e)


@manager.route('/knowledge_graph', methods=['GET'])
@login_required
def knowledge_graph():
    doc_id = request.args["doc_id"]
    req = {
        "doc_ids":[doc_id],
        "knowledge_graph_kwd": ["graph", "mind_map"]
    }
    tenant_id = DocumentService.get_tenant_id(doc_id)
    sres = retrievaler.search(req, search.index_name(tenant_id))
    obj = {"graph": {}, "mind_map": {}}
    for id in sres.ids[:2]:
        ty = sres.field[id]["knowledge_graph_kwd"]
        try:
            obj[ty] = json.loads(sres.field[id]["content_with_weight"])
        except Exception as e:
            print(traceback.format_exc(), flush=True)

    return get_json_result(data=obj)