Spaces:
Paused
Paused
File size: 10,356 Bytes
ab2ded1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import importlib
import json
import traceback
from abc import ABC
from copy import deepcopy
from functools import partial
import pandas as pd
from agent.component import component_class
from agent.component.base import ComponentBase
from agent.settings import flow_logger, DEBUG
class Canvas(ABC):
"""
dsl = {
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {},
},
"downstream": ["answer_0"],
"upstream": [],
},
"answer_0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["retrieval_0"],
"upstream": ["begin", "generate_0"],
},
"retrieval_0": {
"obj": {
"component_name": "Retrieval",
"params": {}
},
"downstream": ["generate_0"],
"upstream": ["answer_0"],
},
"generate_0": {
"obj": {
"component_name": "Generate",
"params": {}
},
"downstream": ["answer_0"],
"upstream": ["retrieval_0"],
}
},
"history": [],
"messages": [],
"reference": [],
"path": [["begin"]],
"answer": []
}
"""
def __init__(self, dsl: str, tenant_id=None):
self.path = []
self.history = []
self.messages = []
self.answer = []
self.components = {}
self.dsl = json.loads(dsl) if dsl else {
"components": {
"begin": {
"obj": {
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": [],
"upstream": []
}
},
"history": [],
"messages": [],
"reference": [],
"path": [],
"answer": []
}
self._tenant_id = tenant_id
self._embed_id = ""
self.load()
def load(self):
self.components = self.dsl["components"]
cpn_nms = set([])
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
assert "Begin" in cpn_nms, "There have to be an 'Begin' component."
assert "Answer" in cpn_nms, "There have to be an 'Answer' component."
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
param = component_class(cpn["obj"]["component_name"] + "Param")()
param.update(cpn["obj"]["params"])
param.check()
cpn["obj"] = component_class(cpn["obj"]["component_name"])(self, k, param)
if cpn["obj"].component_name == "Categorize":
for _, desc in param.category_description.items():
if desc["to"] not in cpn["downstream"]:
cpn["downstream"].append(desc["to"])
self.path = self.dsl["path"]
self.history = self.dsl["history"]
self.messages = self.dsl["messages"]
self.answer = self.dsl["answer"]
self.reference = self.dsl["reference"]
self._embed_id = self.dsl.get("embed_id", "")
def __str__(self):
self.dsl["path"] = self.path
self.dsl["history"] = self.history
self.dsl["messages"] = self.messages
self.dsl["answer"] = self.answer
self.dsl["reference"] = self.reference
self.dsl["embed_id"] = self._embed_id
dsl = {
"components": {}
}
for k in self.dsl.keys():
if k in ["components"]:continue
dsl[k] = deepcopy(self.dsl[k])
for k, cpn in self.components.items():
if k not in dsl["components"]:
dsl["components"][k] = {}
for c in cpn.keys():
if c == "obj":
dsl["components"][k][c] = json.loads(str(cpn["obj"]))
continue
dsl["components"][k][c] = deepcopy(cpn[c])
return json.dumps(dsl, ensure_ascii=False)
def reset(self):
self.path = []
self.history = []
self.messages = []
self.answer = []
self.reference = []
for k, cpn in self.components.items():
self.components[k]["obj"].reset()
self._embed_id = ""
def run(self, **kwargs):
ans = ""
if self.answer:
cpn_id = self.answer[0]
self.answer.pop(0)
try:
ans = self.components[cpn_id]["obj"].run(self.history, **kwargs)
except Exception as e:
ans = ComponentBase.be_output(str(e))
self.path[-1].append(cpn_id)
if kwargs.get("stream"):
assert isinstance(ans, partial)
return ans
self.history.append(("assistant", ans.to_dict("records")))
return ans
if not self.path:
self.components["begin"]["obj"].run(self.history, **kwargs)
self.path.append(["begin"])
self.path.append([])
ran = -1
def prepare2run(cpns):
nonlocal ran, ans
for c in cpns:
if self.path[-1] and c == self.path[-1][-1]: continue
cpn = self.components[c]["obj"]
if cpn.component_name == "Answer":
self.answer.append(c)
else:
if DEBUG: print("RUN: ", c)
if cpn.component_name == "Generate":
cpids = cpn.get_dependent_components()
if any([c not in self.path[-1] for c in cpids]):
continue
ans = cpn.run(self.history, **kwargs)
self.path[-1].append(c)
ran += 1
prepare2run(self.components[self.path[-2][-1]]["downstream"])
while 0 <= ran < len(self.path[-1]):
if DEBUG: print(ran, self.path)
cpn_id = self.path[-1][ran]
cpn = self.get_component(cpn_id)
if not cpn["downstream"]: break
loop = self._find_loop()
if loop: raise OverflowError(f"Too much loops: {loop}")
if cpn["obj"].component_name.lower() in ["switch", "categorize", "relevant"]:
switch_out = cpn["obj"].output()[1].iloc[0, 0]
assert switch_out in self.components, \
"{}'s output: {} not valid.".format(cpn_id, switch_out)
try:
prepare2run([switch_out])
except Exception as e:
for p in [c for p in self.path for c in p][::-1]:
if p.lower().find("answer") >= 0:
self.get_component(p)["obj"].set_exception(e)
prepare2run([p])
break
traceback.print_exc()
break
continue
try:
prepare2run(cpn["downstream"])
except Exception as e:
for p in [c for p in self.path for c in p][::-1]:
if p.lower().find("answer") >= 0:
self.get_component(p)["obj"].set_exception(e)
prepare2run([p])
break
traceback.print_exc()
break
if self.answer:
cpn_id = self.answer[0]
self.answer.pop(0)
ans = self.components[cpn_id]["obj"].run(self.history, **kwargs)
self.path[-1].append(cpn_id)
if kwargs.get("stream"):
assert isinstance(ans, partial)
return ans
self.history.append(("assistant", ans.to_dict("records")))
return ans
def get_component(self, cpn_id):
return self.components[cpn_id]
def get_tenant_id(self):
return self._tenant_id
def get_history(self, window_size):
convs = []
for role, obj in self.history[window_size * -2:]:
convs.append({"role": role, "content": (obj if role == "user" else
'\n'.join(pd.DataFrame(obj)['content']))})
return convs
def add_user_input(self, question):
self.history.append(("user", question))
def set_embedding_model(self, embed_id):
self._embed_id = embed_id
def get_embedding_model(self):
return self._embed_id
def _find_loop(self, max_loops=2):
path = self.path[-1][::-1]
if len(path) < 2: return False
for i in range(len(path)):
if path[i].lower().find("answer") >= 0:
path = path[:i]
break
if len(path) < 2: return False
for l in range(2, len(path) // 2):
pat = ",".join(path[0:l])
path_str = ",".join(path)
if len(pat) >= len(path_str): return False
loop = max_loops
while path_str.find(pat) == 0 and loop >= 0:
loop -= 1
if len(pat)+1 >= len(path_str):
return False
path_str = path_str[len(pat)+1:]
if loop < 0:
pat = " => ".join([p.split(":")[0] for p in path[0:l]])
return pat + " => " + pat
return False
|