File size: 5,270 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#

import argparse
import pickle
import random
import time
from copy import deepcopy
from multiprocessing.connection import Listener
from threading import Thread
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer


def torch_gc():
    try:
        import torch
        if torch.cuda.is_available():
            # with torch.cuda.device(DEVICE):
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()
        elif torch.backends.mps.is_available():
            try:
                from torch.mps import empty_cache
                empty_cache()
            except Exception as e:
                pass
    except Exception:
        pass


class RPCHandler:
    def __init__(self):
        self._functions = {}

    def register_function(self, func):
        self._functions[func.__name__] = func

    def handle_connection(self, connection):
        try:
            while True:
                # Receive a message
                func_name, args, kwargs = pickle.loads(connection.recv())
                # Run the RPC and send a response
                try:
                    r = self._functions[func_name](*args, **kwargs)
                    connection.send(pickle.dumps(r))
                except Exception as e:
                    connection.send(pickle.dumps(e))
        except EOFError:
            pass


def rpc_server(hdlr, address, authkey):
    sock = Listener(address, authkey=authkey)
    while True:
        try:
            client = sock.accept()
            t = Thread(target=hdlr.handle_connection, args=(client,))
            t.daemon = True
            t.start()
        except Exception as e:
            print("【EXCEPTION】:", str(e))


models = []
tokenizer = None


def chat(messages, gen_conf):
    global tokenizer
    model = Model()
    try:
        torch_gc()
        conf = {
            "max_new_tokens": int(
                gen_conf.get(
                    "max_tokens", 256)), "temperature": float(
                gen_conf.get(
                    "temperature", 0.1))}
        print(messages, conf)
        text = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

        generated_ids = model.generate(
            model_inputs.input_ids,
            **conf
        )
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        ]

        return tokenizer.batch_decode(
            generated_ids, skip_special_tokens=True)[0]
    except Exception as e:
        return str(e)


def chat_streamly(messages, gen_conf):
    global tokenizer
    model = Model()
    try:
        torch_gc()
        conf = deepcopy(gen_conf)
        print(messages, conf)
        text = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
        streamer = TextStreamer(tokenizer)
        conf["inputs"] = model_inputs.input_ids
        conf["streamer"] = streamer
        conf["max_new_tokens"] = conf["max_tokens"]
        del conf["max_tokens"]
        thread = Thread(target=model.generate, kwargs=conf)
        thread.start()
        for _, new_text in enumerate(streamer):
            yield new_text
    except Exception as e:
        yield "**ERROR**: " + str(e)


def Model():
    global models
    random.seed(time.time())
    return random.choice(models)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_name", type=str, help="Model name")
    parser.add_argument(
        "--port",
        default=7860,
        type=int,
        help="RPC serving port")
    args = parser.parse_args()

    handler = RPCHandler()
    handler.register_function(chat)
    handler.register_function(chat_streamly)

    models = []
    for _ in range(1):
        m = AutoModelForCausalLM.from_pretrained(args.model_name,
                                                 device_map="auto",
                                                 torch_dtype='auto')
        models.append(m)
    tokenizer = AutoTokenizer.from_pretrained(args.model_name)

    # Run the server
    rpc_server(handler, ('0.0.0.0', args.port),
               authkey=b'infiniflow-token4kevinhu')