File size: 6,492 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import collections
import logging
import re
import logging
import traceback
from concurrent.futures import ThreadPoolExecutor
from dataclasses import dataclass
from typing import Any

from graphrag.mind_map_prompt import MIND_MAP_EXTRACTION_PROMPT
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements
from rag.llm.chat_model import Base as CompletionLLM
import markdown_to_json
from functools import reduce
from rag.utils import num_tokens_from_string


@dataclass
class MindMapResult:
    """Unipartite Mind Graph result class definition."""
    output: dict


class MindMapExtractor:

    _llm: CompletionLLM
    _input_text_key: str
    _mind_map_prompt: str
    _on_error: ErrorHandlerFn

    def __init__(
            self,
            llm_invoker: CompletionLLM,
            prompt: str | None = None,
            input_text_key: str | None = None,
            on_error: ErrorHandlerFn | None = None,
    ):
        """Init method definition."""
        # TODO: streamline construction
        self._llm = llm_invoker
        self._input_text_key = input_text_key or "input_text"
        self._mind_map_prompt = prompt or MIND_MAP_EXTRACTION_PROMPT
        self._on_error = on_error or (lambda _e, _s, _d: None)

    def _key(self, k):
        return re.sub(r"\*+", "", k)

    def _be_children(self, obj: dict, keyset: set):
        if isinstance(obj, str):
            obj = [obj]
        if isinstance(obj, list):
            for i in obj: keyset.add(i)
            return [{"id": re.sub(r"\*+", "", i), "children": []} for i in obj]
        arr = []
        for k, v in obj.items():
            k = self._key(k)
            if not k or k in keyset: continue
            keyset.add(k)
            arr.append({
                "id": k,
                "children": self._be_children(v, keyset)
            })
        return arr

    def __call__(
            self, sections: list[str], prompt_variables: dict[str, Any] | None = None
    ) -> MindMapResult:
        """Call method definition."""
        if prompt_variables is None:
            prompt_variables = {}

        try:
            exe = ThreadPoolExecutor(max_workers=12)
            threads = []
            token_count = max(self._llm.max_length * 0.8, self._llm.max_length-512)
            texts = []
            res = []
            cnt = 0
            for i in range(len(sections)):
                section_cnt = num_tokens_from_string(sections[i])
                if cnt + section_cnt >= token_count and texts:
                    threads.append(exe.submit(self._process_document, "".join(texts), prompt_variables))
                    texts = []
                    cnt = 0
                texts.append(sections[i])
                cnt += section_cnt
            if texts:
                threads.append(exe.submit(self._process_document, "".join(texts), prompt_variables))

            for i, _ in enumerate(threads):
                res.append(_.result())

            merge_json = reduce(self._merge, res)
            if len(merge_json.keys()) > 1:
                keyset = set(
                    [re.sub(r"\*+", "", k) for k, v in merge_json.items() if isinstance(v, dict) and re.sub(r"\*+", "", k)])
                merge_json = {"id": "root",
                          "children": [{"id": self._key(k), "children": self._be_children(v, keyset)} for k, v in
                                       merge_json.items() if isinstance(v, dict) and self._key(k)]}
            else:
                k = self._key(list(self._be_children.keys())[0])
                merge_json = {"id": k, "children": self._be_children(list(merge_json.items())[0][1], set([k]))}

        except Exception as e:
            logging.exception("error mind graph")
            self._on_error(
                e,
                traceback.format_exc(), None
            )
            merge_json = {"error": str(e)}

        return MindMapResult(output=merge_json)

    def _merge(self, d1, d2):
        for k in d1:
            if k in d2:
                if isinstance(d1[k], dict) and isinstance(d2[k], dict):
                    self._merge(d1[k], d2[k])
                elif isinstance(d1[k], list) and isinstance(d2[k], list):
                    d2[k].extend(d1[k])
                else:
                    d2[k] = d1[k]
            else:
                d2[k] = d1[k]

        return d2

    def _list_to_kv(self, data):
        for key, value in data.items():
            if isinstance(value, dict):
                self._list_to_kv(value)
            elif isinstance(value, list):
                new_value = {}
                for i in range(len(value)):
                    if isinstance(value[i], list):
                        new_value[value[i - 1]] = value[i][0]
                data[key] = new_value
            else:
                continue
        return data

    def _todict(self, layer:collections.OrderedDict):
        to_ret = layer
        if isinstance(layer, collections.OrderedDict):
            to_ret = dict(layer)

        try:
            for key, value in to_ret.items():
                to_ret[key] = self._todict(value)
        except AttributeError:
            pass

        return self._list_to_kv(to_ret)

    def _process_document(
            self, text: str, prompt_variables: dict[str, str]
    ) -> str:
        variables = {
            **prompt_variables,
            self._input_text_key: text,
        }
        text = perform_variable_replacements(self._mind_map_prompt, variables=variables)
        gen_conf = {"temperature": 0.5}
        response = self._llm.chat(text, [], gen_conf)
        response = re.sub(r"```[^\n]*", "", response)
        print(response)
        print("---------------------------------------------------\n", self._todict(markdown_to_json.dictify(response)))
        return self._todict(markdown_to_json.dictify(response))