Spaces:
Paused
Paused
File size: 2,193 Bytes
ab2ded1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import json
from graphrag import leiden
from graphrag.community_reports_extractor import CommunityReportsExtractor
from graphrag.entity_resolution import EntityResolution
from graphrag.graph_extractor import GraphExtractor
from graphrag.leiden import add_community_info2graph
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-t', '--tenant_id', default=False, help="Tenant ID", action='store', required=True)
parser.add_argument('-d', '--doc_id', default=False, help="Document ID", action='store', required=True)
args = parser.parse_args()
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
ex = GraphExtractor(LLMBundle(args.tenant_id, LLMType.CHAT))
docs = [d["content_with_weight"] for d in
retrievaler.chunk_list(args.doc_id, args.tenant_id, max_count=6, fields=["content_with_weight"])]
graph = ex(docs)
er = EntityResolution(LLMBundle(args.tenant_id, LLMType.CHAT))
graph = er(graph.output)
comm = leiden.run(graph.output, {})
add_community_info2graph(graph.output, comm)
# print(json.dumps(nx.node_link_data(graph.output), ensure_ascii=False,indent=2))
print(json.dumps(comm, ensure_ascii=False, indent=2))
cr = CommunityReportsExtractor(LLMBundle(args.tenant_id, LLMType.CHAT))
cr = cr(graph.output)
print("------------------ COMMUNITY REPORT ----------------------\n", cr.output)
print(json.dumps(cr.structured_output, ensure_ascii=False, indent=2)) |