Spaces:
Paused
Paused
File size: 10,367 Bytes
ab2ded1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import re
import traceback
from dataclasses import dataclass
from typing import Any
import networkx as nx
from rag.nlp import is_english
import editdistance
from graphrag.entity_resolution_prompt import ENTITY_RESOLUTION_PROMPT
from rag.llm.chat_model import Base as CompletionLLM
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements
DEFAULT_RECORD_DELIMITER = "##"
DEFAULT_ENTITY_INDEX_DELIMITER = "<|>"
DEFAULT_RESOLUTION_RESULT_DELIMITER = "&&"
@dataclass
class EntityResolutionResult:
"""Entity resolution result class definition."""
output: nx.Graph
class EntityResolution:
"""Entity resolution class definition."""
_llm: CompletionLLM
_resolution_prompt: str
_output_formatter_prompt: str
_on_error: ErrorHandlerFn
_record_delimiter_key: str
_entity_index_delimiter_key: str
_resolution_result_delimiter_key: str
def __init__(
self,
llm_invoker: CompletionLLM,
resolution_prompt: str | None = None,
on_error: ErrorHandlerFn | None = None,
record_delimiter_key: str | None = None,
entity_index_delimiter_key: str | None = None,
resolution_result_delimiter_key: str | None = None,
input_text_key: str | None = None
):
"""Init method definition."""
self._llm = llm_invoker
self._resolution_prompt = resolution_prompt or ENTITY_RESOLUTION_PROMPT
self._on_error = on_error or (lambda _e, _s, _d: None)
self._record_delimiter_key = record_delimiter_key or "record_delimiter"
self._entity_index_dilimiter_key = entity_index_delimiter_key or "entity_index_delimiter"
self._resolution_result_delimiter_key = resolution_result_delimiter_key or "resolution_result_delimiter"
self._input_text_key = input_text_key or "input_text"
def __call__(self, graph: nx.Graph, prompt_variables: dict[str, Any] | None = None) -> EntityResolutionResult:
"""Call method definition."""
if prompt_variables is None:
prompt_variables = {}
# Wire defaults into the prompt variables
prompt_variables = {
**prompt_variables,
self._record_delimiter_key: prompt_variables.get(self._record_delimiter_key)
or DEFAULT_RECORD_DELIMITER,
self._entity_index_dilimiter_key: prompt_variables.get(self._entity_index_dilimiter_key)
or DEFAULT_ENTITY_INDEX_DELIMITER,
self._resolution_result_delimiter_key: prompt_variables.get(self._resolution_result_delimiter_key)
or DEFAULT_RESOLUTION_RESULT_DELIMITER,
}
nodes = graph.nodes
entity_types = list(set(graph.nodes[node]['entity_type'] for node in nodes))
node_clusters = {entity_type: [] for entity_type in entity_types}
for node in nodes:
node_clusters[graph.nodes[node]['entity_type']].append(node)
candidate_resolution = {entity_type: [] for entity_type in entity_types}
for node_cluster in node_clusters.items():
candidate_resolution_tmp = []
for a in node_cluster[1]:
for b in node_cluster[1]:
if a == b:
continue
if self.is_similarity(a, b) and (b, a) not in candidate_resolution_tmp:
candidate_resolution_tmp.append((a, b))
if candidate_resolution_tmp:
candidate_resolution[node_cluster[0]] = candidate_resolution_tmp
gen_conf = {"temperature": 0.5}
resolution_result = set()
for candidate_resolution_i in candidate_resolution.items():
if candidate_resolution_i[1]:
try:
pair_txt = [
f'When determining whether two {candidate_resolution_i[0]}s are the same, you should only focus on critical properties and overlook noisy factors.\n']
for index, candidate in enumerate(candidate_resolution_i[1]):
pair_txt.append(
f'Question {index + 1}: name of{candidate_resolution_i[0]} A is {candidate[0]} ,name of{candidate_resolution_i[0]} B is {candidate[1]}')
sent = 'question above' if len(pair_txt) == 1 else f'above {len(pair_txt)} questions'
pair_txt.append(
f'\nUse domain knowledge of {candidate_resolution_i[0]}s to help understand the text and answer the {sent} in the format: For Question i, Yes, {candidate_resolution_i[0]} A and {candidate_resolution_i[0]} B are the same {candidate_resolution_i[0]}./No, {candidate_resolution_i[0]} A and {candidate_resolution_i[0]} B are different {candidate_resolution_i[0]}s. For Question i+1, (repeat the above procedures)')
pair_prompt = '\n'.join(pair_txt)
variables = {
**prompt_variables,
self._input_text_key: pair_prompt
}
text = perform_variable_replacements(self._resolution_prompt, variables=variables)
response = self._llm.chat(text, [], gen_conf)
result = self._process_results(len(candidate_resolution_i[1]), response,
prompt_variables.get(self._record_delimiter_key,
DEFAULT_RECORD_DELIMITER),
prompt_variables.get(self._entity_index_dilimiter_key,
DEFAULT_ENTITY_INDEX_DELIMITER),
prompt_variables.get(self._resolution_result_delimiter_key,
DEFAULT_RESOLUTION_RESULT_DELIMITER))
for result_i in result:
resolution_result.add(candidate_resolution_i[1][result_i[0] - 1])
except Exception as e:
logging.exception("error entity resolution")
self._on_error(e, traceback.format_exc(), None)
connect_graph = nx.Graph()
connect_graph.add_edges_from(resolution_result)
for sub_connect_graph in nx.connected_components(connect_graph):
sub_connect_graph = connect_graph.subgraph(sub_connect_graph)
remove_nodes = list(sub_connect_graph.nodes)
keep_node = remove_nodes.pop()
for remove_node in remove_nodes:
remove_node_neighbors = graph[remove_node]
graph.nodes[keep_node]['description'] += graph.nodes[remove_node]['description']
graph.nodes[keep_node]['weight'] += graph.nodes[remove_node]['weight']
remove_node_neighbors = list(remove_node_neighbors)
for remove_node_neighbor in remove_node_neighbors:
if remove_node_neighbor == keep_node:
graph.remove_edge(keep_node, remove_node)
continue
if graph.has_edge(keep_node, remove_node_neighbor):
graph[keep_node][remove_node_neighbor]['weight'] += graph[remove_node][remove_node_neighbor][
'weight']
graph[keep_node][remove_node_neighbor]['description'] += \
graph[remove_node][remove_node_neighbor]['description']
graph.remove_edge(remove_node, remove_node_neighbor)
else:
graph.add_edge(keep_node, remove_node_neighbor,
weight=graph[remove_node][remove_node_neighbor]['weight'],
description=graph[remove_node][remove_node_neighbor]['description'],
source_id="")
graph.remove_edge(remove_node, remove_node_neighbor)
graph.remove_node(remove_node)
for node_degree in graph.degree:
graph.nodes[str(node_degree[0])]["rank"] = int(node_degree[1])
return EntityResolutionResult(
output=graph,
)
def _process_results(
self,
records_length: int,
results: str,
record_delimiter: str,
entity_index_delimiter: str,
resolution_result_delimiter: str
) -> list:
ans_list = []
records = [r.strip() for r in results.split(record_delimiter)]
for record in records:
pattern_int = f"{re.escape(entity_index_delimiter)}(\d+){re.escape(entity_index_delimiter)}"
match_int = re.search(pattern_int, record)
res_int = int(str(match_int.group(1) if match_int else '0'))
if res_int > records_length:
continue
pattern_bool = f"{re.escape(resolution_result_delimiter)}([a-zA-Z]+){re.escape(resolution_result_delimiter)}"
match_bool = re.search(pattern_bool, record)
res_bool = str(match_bool.group(1) if match_bool else '')
if res_int and res_bool:
if res_bool.lower() == 'yes':
ans_list.append((res_int, "yes"))
return ans_list
def is_similarity(self, a, b):
if is_english(a) and is_english(b):
if editdistance.eval(a, b) <= min(len(a), len(b)) // 2:
return True
if len(set(a) & set(b)) > 0:
return True
return False
|