File size: 26,073 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
from openai.lib.azure import AzureOpenAI
from zhipuai import ZhipuAI
import io
from abc import ABC
from ollama import Client
from PIL import Image
from openai import OpenAI
import os
import base64
from io import BytesIO
import json
import requests

from rag.nlp import is_english
from api.utils import get_uuid
from api.utils.file_utils import get_project_base_directory


class Base(ABC):
    def __init__(self, key, model_name):
        pass

    def describe(self, image, max_tokens=300):
        raise NotImplementedError("Please implement encode method!")
        
    def chat(self, system, history, gen_conf, image=""):
        if system:
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
        try:
            for his in history:
                if his["role"] == "user":
                    his["content"] = self.chat_prompt(his["content"], image)

            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                max_tokens=gen_conf.get("max_tokens", 1000),
                temperature=gen_conf.get("temperature", 0.3),
                top_p=gen_conf.get("top_p", 0.7)
            )
            return response.choices[0].message.content.strip(), response.usage.total_tokens
        except Exception as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf, image=""):
        if system:
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]

        ans = ""
        tk_count = 0
        try:
            for his in history:
                if his["role"] == "user":
                    his["content"] = self.chat_prompt(his["content"], image)

            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                max_tokens=gen_conf.get("max_tokens", 1000),
                temperature=gen_conf.get("temperature", 0.3),
                top_p=gen_conf.get("top_p", 0.7),
                stream=True
            )
            for resp in response:
                if not resp.choices[0].delta.content: continue
                delta = resp.choices[0].delta.content
                ans += delta
                if resp.choices[0].finish_reason == "length":
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                        [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
                    tk_count = resp.usage.total_tokens
                if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens
                yield ans
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield tk_count
        
    def image2base64(self, image):
        if isinstance(image, bytes):
            return base64.b64encode(image).decode("utf-8")
        if isinstance(image, BytesIO):
            return base64.b64encode(image.getvalue()).decode("utf-8")
        buffered = BytesIO()
        try:
            image.save(buffered, format="JPEG")
        except Exception as e:
            image.save(buffered, format="PNG")
        return base64.b64encode(buffered.getvalue()).decode("utf-8")

    def prompt(self, b64):
        return [
            {
                "role": "user",
                "content": [
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{b64}"
                        },
                    },
                    {
                        "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
                        "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
                    },
                ],
            }
        ]

    def chat_prompt(self, text, b64):
        return [
            {
                "type": "image_url",
                "image_url": {
                    "url": f"data:image/jpeg;base64,{b64}",
                },
            },
            {
                "type": "text",
                "text": text
            },
        ]


class GptV4(Base):
    def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"):
        if not base_url: base_url="https://api.openai.com/v1"
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name
        self.lang = lang

    def describe(self, image, max_tokens=300):
        b64 = self.image2base64(image)
        prompt = self.prompt(b64)
        for i in range(len(prompt)):
            for c in prompt[i]["content"]:
                if "text" in c: c["type"] = "text"

        res = self.client.chat.completions.create(
            model=self.model_name,
            messages=prompt,
            max_tokens=max_tokens,
        )
        return res.choices[0].message.content.strip(), res.usage.total_tokens

class AzureGptV4(Base):
    def __init__(self, key, model_name, lang="Chinese", **kwargs):
        self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
        self.model_name = model_name
        self.lang = lang

    def describe(self, image, max_tokens=300):
        b64 = self.image2base64(image)
        prompt = self.prompt(b64)
        for i in range(len(prompt)):
            for c in prompt[i]["content"]:
                if "text" in c: c["type"] = "text"

        res = self.client.chat.completions.create(
            model=self.model_name,
            messages=prompt,
            max_tokens=max_tokens,
        )
        return res.choices[0].message.content.strip(), res.usage.total_tokens


class QWenCV(Base):
    def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", **kwargs):
        import dashscope
        dashscope.api_key = key
        self.model_name = model_name
        self.lang = lang

    def prompt(self, binary):
        # stupid as hell
        tmp_dir = get_project_base_directory("tmp")
        if not os.path.exists(tmp_dir):
            os.mkdir(tmp_dir)
        path = os.path.join(tmp_dir, "%s.jpg" % get_uuid())
        Image.open(io.BytesIO(binary)).save(path)
        return [
            {
                "role": "user",
                "content": [
                    {
                        "image": f"file://{path}"
                    },
                    {
                        "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
                        "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
                    },
                ],
            }
        ]

    def chat_prompt(self, text, b64):
        return [
            {"image": f"{b64}"},
            {"text": text},
        ]
    
    def describe(self, image, max_tokens=300):
        from http import HTTPStatus
        from dashscope import MultiModalConversation
        response = MultiModalConversation.call(model=self.model_name,
                                               messages=self.prompt(image))
        if response.status_code == HTTPStatus.OK:
            return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens
        return response.message, 0

    def chat(self, system, history, gen_conf, image=""):
        from http import HTTPStatus
        from dashscope import MultiModalConversation
        if system:
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]

        for his in history:
            if his["role"] == "user":
                his["content"] = self.chat_prompt(his["content"], image)
        response = MultiModalConversation.call(model=self.model_name, messages=history,
                                               max_tokens=gen_conf.get("max_tokens", 1000),
                                               temperature=gen_conf.get("temperature", 0.3),
                                               top_p=gen_conf.get("top_p", 0.7))

        ans = ""
        tk_count = 0
        if response.status_code == HTTPStatus.OK:
            ans += response.output.choices[0]['message']['content']
            tk_count += response.usage.total_tokens
            if response.output.choices[0].get("finish_reason", "") == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
            return ans, tk_count

        return "**ERROR**: " + response.message, tk_count

    def chat_streamly(self, system, history, gen_conf, image=""):
        from http import HTTPStatus
        from dashscope import MultiModalConversation
        if system:
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]

        for his in history:
            if his["role"] == "user":
                his["content"] = self.chat_prompt(his["content"], image)

        ans = ""
        tk_count = 0
        try:
            response = MultiModalConversation.call(model=self.model_name, messages=history,
                                                   max_tokens=gen_conf.get("max_tokens", 1000),
                                                   temperature=gen_conf.get("temperature", 0.3),
                                                   top_p=gen_conf.get("top_p", 0.7),
                                                   stream=True)
            for resp in response:
                if resp.status_code == HTTPStatus.OK:
                    ans = resp.output.choices[0]['message']['content']
                    tk_count = resp.usage.total_tokens
                    if resp.output.choices[0].get("finish_reason", "") == "length":
                        ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                            [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
                    yield ans
                else:
                    yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find(
                        "Access") < 0 else "Out of credit. Please set the API key in **settings > Model providers.**"
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield tk_count


class Zhipu4V(Base):
    def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
        self.client = ZhipuAI(api_key=key)
        self.model_name = model_name
        self.lang = lang

    def describe(self, image, max_tokens=1024):
        b64 = self.image2base64(image)

        res = self.client.chat.completions.create(
            model=self.model_name,
            messages=self.prompt(b64),
            max_tokens=max_tokens,
        )
        return res.choices[0].message.content.strip(), res.usage.total_tokens

    def chat(self, system, history, gen_conf, image=""):
        if system:
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
        try:
            for his in history:
                if his["role"] == "user":
                    his["content"] = self.chat_prompt(his["content"], image)

            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                max_tokens=gen_conf.get("max_tokens", 1000),
                temperature=gen_conf.get("temperature", 0.3),
                top_p=gen_conf.get("top_p", 0.7)
            )
            return response.choices[0].message.content.strip(), response.usage.total_tokens
        except Exception as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf, image=""):
        if system:
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]

        ans = ""
        tk_count = 0
        try:
            for his in history:
                if his["role"] == "user":
                    his["content"] = self.chat_prompt(his["content"], image)

            response = self.client.chat.completions.create(
                model=self.model_name, 
                messages=history,
                max_tokens=gen_conf.get("max_tokens", 1000),
                temperature=gen_conf.get("temperature", 0.3),
                top_p=gen_conf.get("top_p", 0.7),
                stream=True
            )
            for resp in response:
                if not resp.choices[0].delta.content: continue
                delta = resp.choices[0].delta.content
                ans += delta
                if resp.choices[0].finish_reason == "length":
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                        [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
                    tk_count = resp.usage.total_tokens
                if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens
                yield ans
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield tk_count


class OllamaCV(Base):
    def __init__(self, key, model_name, lang="Chinese", **kwargs):
        self.client = Client(host=kwargs["base_url"])
        self.model_name = model_name
        self.lang = lang

    def describe(self, image, max_tokens=1024):
        prompt = self.prompt("")
        try:
            options = {"num_predict": max_tokens}
            response = self.client.generate(
                model=self.model_name,
                prompt=prompt[0]["content"][1]["text"],
                images=[image],
                options=options
            )
            ans = response["response"].strip()
            return ans, 128
        except Exception as e:
            return "**ERROR**: " + str(e), 0

    def chat(self, system, history, gen_conf, image=""):
        if system:
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]

        try:
            for his in history:
                if his["role"] == "user":
                    his["images"] = [image]
            options = {}
            if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
            if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
            if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
            if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
            if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
            response = self.client.chat(
                model=self.model_name,
                messages=history,
                options=options,
                keep_alive=-1
            )

            ans = response["message"]["content"].strip()
            return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
        except Exception as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf, image=""):
        if system:
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]

        for his in history:
            if his["role"] == "user":
                his["images"] = [image]
        options = {}
        if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
        if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
        if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
        if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
        if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
        ans = ""
        try:
            response = self.client.chat(
                model=self.model_name,
                messages=history,
                stream=True,
                options=options,
                keep_alive=-1
            )
            for resp in response:
                if resp["done"]:
                    yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
                ans += resp["message"]["content"]
                yield ans
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)
        yield 0


class LocalAICV(GptV4):
    def __init__(self, key, model_name, base_url, lang="Chinese"):
        if not base_url:
            raise ValueError("Local cv model url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        self.client = OpenAI(api_key="empty", base_url=base_url)
        self.model_name = model_name.split("___")[0]
        self.lang = lang


class XinferenceCV(Base):
    def __init__(self, key, model_name="", lang="Chinese", base_url=""):
        self.client = OpenAI(api_key="xxx", base_url=base_url)
        self.model_name = model_name
        self.lang = lang

    def describe(self, image, max_tokens=300):
        b64 = self.image2base64(image)

        res = self.client.chat.completions.create(
            model=self.model_name,
            messages=self.prompt(b64),
            max_tokens=max_tokens,
        )
        return res.choices[0].message.content.strip(), res.usage.total_tokens

class GeminiCV(Base):
    def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs):
        from google.generativeai import client, GenerativeModel, GenerationConfig
        client.configure(api_key=key)
        _client = client.get_default_generative_client()
        self.model_name = model_name
        self.model = GenerativeModel(model_name=self.model_name)
        self.model._client = _client
        self.lang = lang 

    def describe(self, image, max_tokens=2048):
        from PIL.Image import open
        gen_config = {'max_output_tokens':max_tokens}
        prompt = "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else \
            "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
        b64 = self.image2base64(image) 
        img = open(BytesIO(base64.b64decode(b64))) 
        input = [prompt,img]
        res = self.model.generate_content(
            input,
            generation_config=gen_config,
        )
        return res.text,res.usage_metadata.total_token_count

    def chat(self, system, history, gen_conf, image=""):
        if system:
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
        try:
            for his in history:
                if his["role"] == "assistant":
                    his["role"] = "model"
                    his["parts"] = [his["content"]]
                    his.pop("content")
                if his["role"] == "user":
                    his["parts"] = [his["content"]]
                    his.pop("content")
            history[-1]["parts"].append(f"data:image/jpeg;base64," + image)

            response = self.model.generate_content(history, generation_config=GenerationConfig(
                max_output_tokens=gen_conf.get("max_tokens", 1000), temperature=gen_conf.get("temperature", 0.3),
                top_p=gen_conf.get("top_p", 0.7)))

            ans = response.text
            return ans, response.usage_metadata.total_token_count
        except Exception as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf, image=""):
        if system:
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]

        ans = ""
        tk_count = 0
        try:
            for his in history:
                if his["role"] == "assistant":
                    his["role"] = "model"
                    his["parts"] = [his["content"]]
                    his.pop("content")
                if his["role"] == "user":
                    his["parts"] = [his["content"]]
                    his.pop("content")
            history[-1]["parts"].append(f"data:image/jpeg;base64," + image)

            response = self.model.generate_content(history, generation_config=GenerationConfig(
                max_output_tokens=gen_conf.get("max_tokens", 1000), temperature=gen_conf.get("temperature", 0.3),
                top_p=gen_conf.get("top_p", 0.7)), stream=True)

            for resp in response:
                if not resp.text: continue
                ans += resp.text
                yield ans
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield response._chunks[-1].usage_metadata.total_token_count


class OpenRouterCV(GptV4):
    def __init__(
        self,
        key,
        model_name,
        lang="Chinese",
        base_url="https://openrouter.ai/api/v1",
    ):
        if not base_url:
            base_url = "https://openrouter.ai/api/v1"
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name
        self.lang = lang


class LocalCV(Base):
    def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
        pass

    def describe(self, image, max_tokens=1024):
        return "", 0


class NvidiaCV(Base):
    def __init__(
        self,
        key,
        model_name,
        lang="Chinese",
        base_url="https://ai.api.nvidia.com/v1/vlm",
    ):
        if not base_url:
            base_url = ("https://ai.api.nvidia.com/v1/vlm",)
        self.lang = lang
        factory, llm_name = model_name.split("/")
        if factory != "liuhaotian":
            self.base_url = os.path.join(base_url, factory, llm_name)
        else:
            self.base_url = os.path.join(
                base_url, "community", llm_name.replace("-v1.6", "16")
            )
        self.key = key

    def describe(self, image, max_tokens=1024):
        b64 = self.image2base64(image)
        response = requests.post(
            url=self.base_url,
            headers={
                "accept": "application/json",
                "content-type": "application/json",
                "Authorization": f"Bearer {self.key}",
            },
            json={
                "messages": self.prompt(b64),
                "max_tokens": max_tokens,
            },
        )
        response = response.json()
        return (
            response["choices"][0]["message"]["content"].strip(),
            response["usage"]["total_tokens"],
        )

    def prompt(self, b64):
        return [
            {
                "role": "user",
                "content": (
                    "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
                    if self.lang.lower() == "chinese"
                    else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
                )
                + f' <img src="data:image/jpeg;base64,{b64}"/>',
            }
        ]

    def chat_prompt(self, text, b64):
        return [
            {
                "role": "user",
                "content": text + f' <img src="data:image/jpeg;base64,{b64}"/>',
            }
        ]

class StepFunCV(GptV4):
    def __init__(self, key, model_name="step-1v-8k", lang="Chinese", base_url="https://api.stepfun.com/v1"):
        if not base_url: base_url="https://api.stepfun.com/v1"
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name
        self.lang = lang

class LmStudioCV(GptV4):
    def __init__(self, key, model_name, base_url, lang="Chinese"):
        if not base_url:
            raise ValueError("Local llm url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        self.client = OpenAI(api_key="lm-studio", base_url=base_url)
        self.model_name = model_name
        self.lang = lang


class OpenAI_APICV(GptV4):
    def __init__(self, key, model_name, base_url, lang="Chinese"):
        if not base_url:
            raise ValueError("url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name.split("___")[0]
        self.lang = lang