Spaces:
Build error
Build error
File size: 22,169 Bytes
414b431 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
import numpy as np
import os
import torch
import torchvision
import torchvision.transforms.functional as torchvision_F
import matplotlib.pyplot as plt
import PIL
import PIL.ImageDraw
from PIL import Image, ImageFont
import trimesh
import pyrender
import cv2
import copy
import base64
import io
import imageio
os.environ['PYOPENGL_PLATFORM'] = 'egl'
@torch.no_grad()
def tb_image(opt, tb, step, group, name, images, masks=None, num_vis=None, from_range=(0, 1), poses=None, cmap="gray", depth=False):
if not depth:
images = preprocess_vis_image(opt, images, masks=masks, from_range=from_range, cmap=cmap) # [B, 3, H, W]
else:
masks = (masks > 0.5).float()
images = images * masks + (1 - masks) * ((images * masks).max())
images = (1 - images).detach().cpu()
num_H, num_W = num_vis or opt.tb.num_images
images = images[:num_H*num_W]
if poses is not None:
# poses: [B, 3, 4]
# rots: [max(B, num_images), 3, 3]
rots = poses[:num_H*num_W, ..., :3]
images = torch.stack([draw_pose(opt, image, rot, size=20, width=2) for image, rot in zip(images, rots)], dim=0)
image_grid = torchvision.utils.make_grid(images[:, :3], nrow=num_W, pad_value=1.)
if images.shape[1]==4:
mask_grid = torchvision.utils.make_grid(images[:, 3:], nrow=num_W, pad_value=1.)[:1]
image_grid = torch.cat([image_grid, mask_grid], dim=0)
tag = "{0}/{1}".format(group, name)
tb.add_image(tag, image_grid, step)
def preprocess_vis_image(opt, images, masks=None, from_range=(0, 1), cmap="gray"):
min, max = from_range
images = (images-min)/(max-min)
if masks is not None:
# then the mask is directly the transparency channel of png
images = torch.cat([images, masks], dim=1)
images = images.clamp(min=0, max=1).cpu()
if images.shape[1]==1:
images = get_heatmap(opt, images[:, 0].cpu(), cmap=cmap)
return images
def preprocess_depth_image(opt, depth, mask=None, max_depth=1000):
if mask is not None: depth = depth * mask + (1 - mask) * max_depth # min of this will leads to minimum of masked regions
depth = depth - depth.min()
if mask is not None: depth = depth * mask # max of this will leads to maximum of masked regions
depth = depth / depth.max()
return depth
def dump_images(opt, idx, name, images, masks=None, from_range=(0, 1), poses=None, metrics=None, cmap="gray", folder='dump'):
images = preprocess_vis_image(opt, images, masks=masks, from_range=from_range, cmap=cmap) # [B, 3, H, W]
if poses is not None:
rots = poses[..., :3]
images = torch.stack([draw_pose(opt, image, rot, size=20, width=2) for image, rot in zip(images, rots)], dim=0)
if metrics is not None:
images = torch.stack([draw_metric(opt, image, metric.item()) for image, metric in zip(images, metrics)], dim=0)
images = images.cpu().permute(0, 2, 3, 1).contiguous().numpy() # [B, H, W, 3]
for i, img in zip(idx, images):
fname = "{}/{}/{}_{}.png".format(opt.output_path, folder, i, name)
img = Image.fromarray((img*255).astype(np.uint8))
img.save(fname)
def dump_depths(opt, idx, name, depths, masks=None, rescale=False, folder='dump'):
if rescale:
masks = (masks > 0.5).float()
depths = depths * masks + (1 - masks) * ((depths * masks).max())
depths = (1 - depths).detach().cpu()
for i, depth in zip(idx, depths):
fname = "{}/{}/{}_{}.png".format(opt.output_path, folder, i, name)
plt.imsave(fname, depth.squeeze(), cmap='viridis')
# img_list is a list of length n_views, where each view is a image tensor of [B, 3, H, W]
def dump_gifs(opt, idx, name, imgs_list, from_range=(0, 1), folder='dump', cmap="gray"):
for i in range(len(imgs_list)):
imgs_list[i] = preprocess_vis_image(opt, imgs_list[i], from_range=from_range, cmap=cmap)
for i in range(len(idx)):
img_list_np = [imgs[i].cpu().permute(1, 2, 0).contiguous().numpy() for imgs in imgs_list] # list of [H, W, 3], each item is a view of ith sample
img_list_pil = [Image.fromarray((img*255).astype(np.uint8)).convert('RGB') for img in img_list_np]
fname = "{}/{}/{}_{}.gif".format(opt.output_path, folder, idx[i], name)
img_list_pil[0].save(fname, format='GIF', append_images=img_list_pil[1:], save_all=True, duration=100, loop=0)
# img_list is a list of length n_views, where each view is a image tensor of [B, 3, H, W]
def dump_attentions(opt, idx, name, attn_vis, folder='dump'):
for i in range(len(idx)):
img_list_pil = [Image.fromarray((img*255).astype(np.uint8)).convert('RGB') for img in attn_vis[i]]
fname = "{}/{}/{}_{}.gif".format(opt.output_path, folder, idx[i], name)
img_list_pil[0].save(fname, format='GIF', append_images=img_list_pil[1:], save_all=True, duration=50, loop=0)
def get_heatmap(opt, gray, cmap): # [N, H, W]
color = plt.get_cmap(cmap)(gray.numpy())
color = torch.from_numpy(color[..., :3]).permute(0, 3, 1, 2).contiguous().float() # [N, 3, H, W]
return color
def dump_meshes(opt, idx, name, meshes, folder='dump'):
for i, mesh in zip(idx, meshes):
fname = "{}/{}/{}_{}.ply".format(opt.output_path, folder, i, name)
try:
mesh.export(fname)
except:
print('Mesh is empty!')
def dump_meshes_viz(opt, idx, name, meshes, save_frames=True, folder='dump'):
for i, mesh in zip(idx, meshes):
mesh = copy.deepcopy(mesh)
R = trimesh.transformations.rotation_matrix(np.radians(180), [0,0,1])
mesh.apply_transform(R)
R = trimesh.transformations.rotation_matrix(np.radians(180), [0,1,0])
mesh.apply_transform(R)
# our marching cubes outputs inverted normals for some reason so this is necessary
trimesh.repair.fix_inversion(mesh)
fname = "{}/{}/{}_{}".format(opt.output_path, folder, i, name)
try:
mesh = scale_to_unit_cube(mesh)
visualize_mesh(mesh, fname, write_frames=save_frames)
except:
pass
def dump_seen_surface(opt, idx, obj_name, img_name, seen_projs, folder='dump'):
# seen_proj: [B, H, W, 3]
for i, seen_proj in zip(idx, seen_projs):
out_folder = "{}/{}".format(opt.output_path, folder)
img_fname = "{}_{}.png".format(i, img_name)
create_seen_surface(i, img_fname, seen_proj, out_folder, obj_name)
# https://github.com/princeton-vl/oasis/blob/master/utils/vis_mesh.py
def create_seen_surface(sample_ID, img_path, XYZ, output_folder, obj_name, connect_thres=0.005):
height, width = XYZ.shape[:2]
XYZ_to_idx = {}
idx = 1
with open("{}/{}_{}.mtl".format(output_folder, sample_ID, obj_name), "w") as f:
f.write("newmtl material_0\n")
f.write("Ka 0.200000 0.200000 0.200000\n")
f.write("Kd 0.752941 0.752941 0.752941\n")
f.write("Ks 1.000000 1.000000 1.000000\n")
f.write("Tr 1.000000\n")
f.write("illum 2\n")
f.write("Ns 0.000000\n")
f.write("map_Ka %s\n" % img_path)
f.write("map_Kd %s\n" % img_path)
with open("{}/{}_{}.obj".format(output_folder, sample_ID, obj_name), "w") as f:
f.write("mtllib {}_{}.mtl\n".format(sample_ID, obj_name))
for y in range(height):
for x in range(width):
if XYZ[y][x][2] > 0:
XYZ_to_idx[(y, x)] = idx
idx += 1
f.write("v %.4f %.4f %.4f\n" % (XYZ[y][x][0], XYZ[y][x][1], XYZ[y][x][2]))
f.write("vt %.8f %.8f\n" % ( float(x) / float(width), 1.0 - float(y) / float(height)))
f.write("usemtl material_0\n")
for y in range(height-1):
for x in range(width-1):
if XYZ[y][x][2] > 0 and XYZ[y][x+1][2] > 0 and XYZ[y+1][x][2] > 0:
# if close enough, connect vertices to form a face
if torch.norm(XYZ[y][x] - XYZ[y][x+1]).item() < connect_thres and torch.norm(XYZ[y][x] - XYZ[y+1][x]).item() < connect_thres:
f.write("f %d/%d %d/%d %d/%d\n" % (XYZ_to_idx[(y, x)], XYZ_to_idx[(y, x)], XYZ_to_idx[(y, x+1)], XYZ_to_idx[(y, x+1)], XYZ_to_idx[(y+1, x)], XYZ_to_idx[(y+1, x)]))
if XYZ[y][x+1][2] > 0 and XYZ[y+1][x+1][2] > 0 and XYZ[y+1][x][2] > 0:
if torch.norm(XYZ[y][x+1] - XYZ[y+1][x+1]).item() < connect_thres and torch.norm(XYZ[y][x+1] - XYZ[y+1][x]).item() < connect_thres:
f.write("f %d/%d %d/%d %d/%d\n" % (XYZ_to_idx[(y, x+1)], XYZ_to_idx[(y, x+1)], XYZ_to_idx[(y+1, x+1)], XYZ_to_idx[(y+1, x+1)], XYZ_to_idx[(y+1, x)], XYZ_to_idx[(y+1, x)]))
def dump_pointclouds_compare(opt, idx, name, preds, gts, folder='dump'):
for i in range(len(idx)):
pred = preds[i].cpu().numpy() # [N1, 3]
gt = gts[i].cpu().numpy() # [N2, 3]
color_pred = np.zeros(pred.shape).astype(np.uint8)
color_pred[:, 0] = 255
color_gt = np.zeros(gt.shape).astype(np.uint8)
color_gt[:, 1] = 255
pc_vertices = np.vstack([pred, gt])
colors = np.vstack([color_pred, color_gt])
pc_color = trimesh.points.PointCloud(vertices=pc_vertices, colors=colors)
fname = "{}/{}/{}_{}.ply".format(opt.output_path, folder, idx[i], name)
pc_color.export(fname)
def dump_pointclouds(opt, idx, name, pcs, colors, folder='dump', colormap='jet'):
for i, pc, color in zip(idx, pcs, colors):
pc = pc.cpu().numpy() # [N, 3]
color = color.cpu().numpy() # [N, 3] or [N, 1]
# convert scalar color to rgb with colormap
if color.shape[1] == 1:
# single channel color in numpy between [0, 1] to rgb
color = plt.get_cmap(colormap)(color[:, 0])
color = (color * 255).astype(np.uint8)
pc_color = trimesh.points.PointCloud(vertices=pc, colors=color)
fname = "{}/{}/{}_{}.ply".format(opt.output_path, folder, i, name)
pc_color.export(fname)
@torch.no_grad()
def vis_pointcloud(opt, vis, step, split, pred, GT=None):
win_name = "{0}/{1}".format(opt.group, opt.name)
pred, GT = pred.cpu().numpy(), GT.cpu().numpy()
for i in range(opt.visdom.num_samples):
# prediction
data = [dict(
type="scatter3d",
x=[float(n) for n in points[i, :opt.visdom.num_points, 0]],
y=[float(n) for n in points[i, :opt.visdom.num_points, 1]],
z=[float(n) for n in points[i, :opt.visdom.num_points, 2]],
mode="markers",
marker=dict(
color=color,
size=1,
),
) for points, color in zip([pred, GT], ["blue", "magenta"])]
vis._send(dict(
data=data,
win="{0} #{1}".format(split, i),
eid="{0}/{1}".format(opt.group, opt.name),
layout=dict(
title="{0} #{1} ({2})".format(split, i, step),
autosize=True,
margin=dict(l=30, r=30, b=30, t=30, ),
showlegend=False,
yaxis=dict(
scaleanchor="x",
scaleratio=1,
)
),
opts=dict(title="{0} #{1} ({2})".format(win_name, i, step), ),
))
@torch.no_grad()
def draw_pose(opt, image, rot_mtrx, size=15, width=1):
# rot_mtrx: [3, 4]
mode = "RGBA" if image.shape[0]==4 else "RGB"
image_pil = torchvision_F.to_pil_image(image.cpu()).convert("RGBA")
draw_pil = PIL.Image.new("RGBA", image_pil.size, (0, 0, 0, 0))
draw = PIL.ImageDraw.Draw(draw_pil)
center = (size, size)
# first column of rotation matrix is the rotated vector of [1, 0, 0]'
# second column of rotation matrix is the rotated vector of [0, 1, 0]'
# third column of rotation matrix is the rotated vector of [0, 0, 1]'
# then always take the first two element of each column is a projection to the 2D plane for visualization
endpoint = [(size+size*p[0], size+size*p[1]) for p in rot_mtrx.t()]
draw.line([center, endpoint[0]], fill=(255, 0, 0), width=width)
draw.line([center, endpoint[1]], fill=(0, 255, 0), width=width)
draw.line([center, endpoint[2]], fill=(0, 0, 255), width=width)
image_pil.alpha_composite(draw_pil)
image_drawn = torchvision_F.to_tensor(image_pil.convert(mode))
return image_drawn
@torch.no_grad()
def draw_metric(opt, image, metric):
mode = "RGBA" if image.shape[0]==4 else "RGB"
image_pil = torchvision_F.to_pil_image(image.cpu()).convert("RGBA")
draw_pil = PIL.Image.new("RGBA", image_pil.size, (0, 0, 0, 0))
draw = PIL.ImageDraw.Draw(draw_pil)
font = ImageFont.truetype("DejaVuSans.ttf", 24)
position = (image_pil.size[0] - 80, image_pil.size[1] - 35)
draw.text(position, '{:.3f}'.format(metric), fill="red", font=font)
image_pil.alpha_composite(draw_pil)
image_drawn = torchvision_F.to_tensor(image_pil.convert(mode))
return image_drawn
@torch.no_grad()
def show_att_on_image(img, mask):
"""
Convert the grayscale attention into heatmap on the image.
Parameters
----------
img: np.array, [H, W, 3]
Original colored image in [0, 1].
mask: np.array, [H, W]
Attention map in [0, 1].
Returns
----------
np image with attention applied.
"""
# check the validity
assert np.max(img) <= 1
assert np.max(mask) <= 1
# generate heatmap and normalize into [0, 1]
heatmap = cv2.cvtColor(cv2.applyColorMap(np.uint8(255*mask), cv2.COLORMAP_JET), cv2.COLOR_BGR2RGB)
heatmap = np.float32(heatmap) / 255
# add heatmap onto the image
merged = heatmap + np.float32(img)
# re-scale the image
merged = merged / np.max(merged)
return merged
def look_at(camera_position, camera_target, up_vector):
vector = camera_position - camera_target
vector = vector / np.linalg.norm(vector)
vector2 = np.cross(up_vector, vector)
vector2 = vector2 / np.linalg.norm(vector2)
vector3 = np.cross(vector, vector2)
return np.array([
[vector2[0], vector3[0], vector[0], 0.0],
[vector2[1], vector3[1], vector[1], 0.0],
[vector2[2], vector3[2], vector[2], 0.0],
[-np.dot(vector2, camera_position), -np.dot(vector3, camera_position), np.dot(vector, camera_position), 1.0]
])
def scale_to_unit_cube(mesh):
if isinstance(mesh, trimesh.Scene):
mesh = mesh.dump().sum()
vertices = mesh.vertices - mesh.bounding_box.centroid
vertices *= 2 / np.max(mesh.bounding_box.extents)
vertices *= 0.5
return trimesh.Trimesh(vertices=vertices, faces=mesh.faces)
def get_positions_and_rotations(n_frames=180, r=1.5):
'''
n_frames: how many frames
r: how far should the camera be
'''
# test case 1
n_frame_full_circ = n_frames // 3 # frames for a full circle
n_frame_half_circ = n_frames // 6 # frames for a half circle
# full circle in horizontal axes going from 1 to -1 height axis
pos1 = [np.array([r*np.cos(theta), elev, r*np.sin(theta)])
for theta, elev in zip(np.linspace(0.5*np.pi,2.5*np.pi, n_frame_full_circ), np.linspace(1,-1,n_frame_full_circ))]
# half circle in horizontal axes at fixed -1 height
pos2 = [np.array([r*np.cos(theta), -1, r*np.sin(theta)])
for theta in np.linspace(2.5*np.pi,3.5*np.pi, n_frame_half_circ)]
# full circle in horizontal axes going from -1 to 1 height axis
pos3 = [np.array([r*np.cos(theta), elev, r*np.sin(theta)])
for theta, elev in zip(np.linspace(3.5*np.pi,5.5*np.pi, n_frame_full_circ), np.linspace(-1,1,n_frame_full_circ))]
# half circle in horizontal axes at fixed 1 height
pos4 = [np.array([r*np.cos(theta), 1, r*np.sin(theta)])
for theta in np.linspace(3.5*np.pi,4.5*np.pi, n_frame_half_circ)]
pos = pos1 + pos2 + pos3 + pos4
target = np.array([0.0, 0.0, 0.0])
up = np.array([0.0, 1.0, 0.0])
rot = [look_at(x, target, up) for x in pos]
return pos, rot
def visualize_mesh(mesh, output_path, resolution=(200,200), write_gif=True, write_frames=True, time_per_frame=80, n_frames=180):
'''
mesh: Trimesh mesh object
output_path: absolute path, ".gif" will get added if write_gif, and this will be used as dirname if write_frames is true
time_per_frame: how many milliseconds to wait for each frame
n_frames: how many frames in total
'''
# set material
mat = pyrender.MetallicRoughnessMaterial(
metallicFactor=0.8,
roughnessFactor=1.0,
alphaMode='OPAQUE',
baseColorFactor=(0.5, 0.5, 0.8, 1.0),
)
# define and add scene elements
mesh = pyrender.Mesh.from_trimesh(mesh, material=mat)
camera = pyrender.PerspectiveCamera(yfov=np.pi / 3.0, aspectRatio=1.0)
light = pyrender.SpotLight(color=np.ones(3), intensity=15.0,
innerConeAngle=np.pi/4.0,
outerConeAngle=np.pi/4.0)
scene = pyrender.Scene()
obj = scene.add(mesh)
cam = scene.add(camera)
light = scene.add(light)
positions, rotations = get_positions_and_rotations(n_frames=n_frames)
r = pyrender.OffscreenRenderer(*resolution)
# move the camera and generate images
count = 0
image_list = []
for pos, rot in zip(positions, rotations):
pose = np.eye(4)
pose[:3, 3] = pos
pose[:3,:3] = rot[:3,:3]
scene.set_pose(cam, pose)
scene.set_pose(light, pose)
color, depth = r.render(scene)
img = Image.fromarray(color, mode="RGB")
image_list.append(img)
# save to file
if write_gif:
image_list[0].save(f"{output_path}.gif", format='GIF', append_images=image_list[1:], save_all=True, duration=80, loop=0)
if write_frames:
if not os.path.exists(output_path):
os.makedirs(output_path)
for i, img in enumerate(image_list):
img.save(os.path.join(output_path, f"{i:04d}.jpg"))
def get_base64_encoded_image(image_path):
"""
Returns the base64-encoded image at the given path.
Args:
image_path (str): The path to the image file.
Returns:
str: The base64-encoded image.
"""
with open(image_path, "rb") as f:
img = Image.open(f)
if img.mode == 'RGBA':
img = img.convert('RGB')
# Resize the image to reduce its file size
img.thumbnail((200, 200))
buffer = io.BytesIO()
# Convert the image to JPEG format to reduce its file size
img.save(buffer, format="JPEG", quality=80)
return base64.b64encode(buffer.getvalue()).decode("utf-8")
def get_base64_encoded_gif(gif_path):
"""
Returns the base64-encoded GIF at the given path.
Args:
gif_path (str): The path to the GIF file.
Returns:
str: The base64-encoded GIF.
"""
with open(gif_path, "rb") as f:
frames = imageio.mimread(f)
# Reduce the number of frames to reduce the file size
frames = frames[::4]
buffer = io.BytesIO()
# compress each image frame to reduce the file size
frames = [frame[::2, ::2] for frame in frames]
# Convert the GIF to a subrectangle format to reduce the file size
imageio.mimsave(buffer, frames, format="GIF", fps=10, subrectangles=True)
return base64.b64encode(buffer.getvalue()).decode("utf-8")
def create_gif_html(folder_path, html_file, skip_every=10):
"""
Creates an HTML file with a grid of sample visualizations.
Args:
folder_path (str): The path to the folder containing the sample visualizations.
html_file (str): The name of the HTML file to create.
"""
# convert path to absolute path
folder_path = os.path.abspath(folder_path)
# Get a list of all the sample IDs
ids = []
count = 0
all_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split("_")[0]))
for filename in all_files:
if filename.endswith("_image_input.png"):
if count % skip_every == 0:
ids.append(filename.split("_")[0])
count += 1
# Write the HTML file
with open(html_file, "w") as f:
# Write the HTML header and CSS style
f.write("<html>\n")
f.write("<head>\n")
f.write("<style>\n")
f.write(".sample-container {\n")
f.write(" display: inline-block;\n")
f.write(" margin: 10px;\n")
f.write(" width: 350px;\n")
f.write(" height: 150px;\n")
f.write(" text-align: center;\n")
f.write("}\n")
f.write(".sample-container:nth-child(6n+1) {\n")
f.write(" clear: left;\n")
f.write("}\n")
f.write(".image-container, .gif-container {\n")
f.write(" display: inline-block;\n")
f.write(" margin: 10px;\n")
f.write(" width: 90px;\n")
f.write(" height: 90px;\n")
f.write(" object-fit: cover;\n")
f.write("}\n")
f.write("</style>\n")
f.write("</head>\n")
f.write("<body>\n")
# Write the sample visualizations to the HTML file
for sample_id in ids:
try:
f.write("<div class=\"sample-container\">\n")
f.write(f"<div class=\"sample-id\"><p>{sample_id}</p></div>\n")
f.write(f"<div class=\"image-container\"><img src=\"data:image/png;base64,{get_base64_encoded_image(os.path.join(folder_path, sample_id + '_image_input.png'))}\" width=\"90\" height=\"90\"></div>\n")
f.write(f"<div class=\"image-container\"><img src=\"data:image/png;base64,{get_base64_encoded_image(os.path.join(folder_path, sample_id + '_depth_est.png'))}\" width=\"90\" height=\"90\"></div>\n")
f.write(f"<div class=\"gif-container\"><img src=\"data:image/gif;base64,{get_base64_encoded_gif(os.path.join(folder_path, sample_id + '_mesh_viz.gif'))}\" width=\"90\" height=\"90\"></div>\n")
f.write("</div>\n")
except:
pass
# Write the HTML footer
f.write("</body>\n")
f.write("</html>\n") |