File size: 7,675 Bytes
414b431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# partially from https://github.com/chenhsuanlin/signed-distance-SRN

import numpy as np
import torch

class Pose():
    # a pose class with util methods
    def __call__(self, R=None, t=None):
        assert(R is not None or t is not None)
        if R is None:
            if not isinstance(t, torch.Tensor): t = torch.tensor(t)
            R = torch.eye(3, device=t.device).repeat(*t.shape[:-1], 1, 1)
        elif t is None:
            if not isinstance(R, torch.Tensor): R = torch.tensor(R)
            t = torch.zeros(R.shape[:-1], device=R.device)
        else:
            if not isinstance(R, torch.Tensor): R = torch.tensor(R)
            if not isinstance(t, torch.Tensor): t = torch.tensor(t)
        assert(R.shape[:-1]==t.shape and R.shape[-2:]==(3, 3))
        R = R.float()
        t = t.float()
        pose = torch.cat([R, t[..., None]], dim=-1) # [..., 3, 4]
        assert(pose.shape[-2:]==(3, 4))
        return pose

    def invert(self, pose, use_inverse=False):
        R, t = pose[..., :3], pose[..., 3:]
        R_inv = R.inverse() if use_inverse else R.transpose(-1, -2)
        t_inv = (-R_inv@t)[..., 0]
        pose_inv = self(R=R_inv, t=t_inv)
        return pose_inv

    def compose(self, pose_list):
        # pose_new(x) = poseN(...(pose2(pose1(x)))...)
        pose_new = pose_list[0]
        for pose in pose_list[1:]:
            pose_new = self.compose_pair(pose_new, pose)
        return pose_new

    def compose_pair(self, pose_a, pose_b):
        # pose_new(x) = pose_b(pose_a(x))
        R_a, t_a = pose_a[..., :3], pose_a[..., 3:]
        R_b, t_b = pose_b[..., :3], pose_b[..., 3:]
        R_new = R_b@R_a
        t_new = (R_b@t_a+t_b)[..., 0]
        pose_new = self(R=R_new, t=t_new)
        return pose_new

pose = Pose()

# unit sphere normalization
def valid_norm_fac(seen_points, mask):
    '''
    seen_points: [B, H*W, 3]
    mask: [B, 1, H, W], boolean
    '''
    # get valid points
    batch_size = seen_points.shape[0]
    # [B, H*W]
    mask = mask.view(batch_size, seen_points.shape[1])
    
    # get mean and variance by sample
    means, max_dists = [], []
    for b in range(batch_size):
        # [N_valid, 3]
        seen_points_valid = seen_points[b][mask[b]]
        # [3]
        xyz_mean = torch.mean(seen_points_valid, dim=0)
        seen_points_valid_zmean = seen_points_valid - xyz_mean
        # scalar
        max_dist = torch.max(seen_points_valid_zmean.norm(dim=1))
        means.append(xyz_mean)
        max_dists.append(max_dist)
    # [B, 3]
    means = torch.stack(means, dim=0)
    # [B]
    max_dists = torch.stack(max_dists, dim=0)
    return means, max_dists

def get_pixel_grid(opt, H, W):
    y_range = torch.arange(H, dtype=torch.float32).to(opt.device)
    x_range = torch.arange(W, dtype=torch.float32).to(opt.device)
    Y, X = torch.meshgrid(y_range, x_range, indexing='ij')
    Z = torch.ones_like(Y)
    xyz_grid = torch.stack([X, Y, Z],dim=-1).view(-1,3) 
    return xyz_grid

def unproj_depth(opt, depth, intr):
    '''
    depth: [B, 1, H, W]
    intr: [B, 3, 3]
    '''
    batch_size, _, H, W = depth.shape
    assert opt.H == H == W
    depth = depth.squeeze(1)
    
    # [B, 3, 3]
    K_inv = torch.linalg.inv(intr).float()
    # [1, H*W,3]
    pixel_grid = get_pixel_grid(opt, H, W).unsqueeze(0)
    # [B, H*W,3]
    pixel_grid = pixel_grid.repeat(batch_size, 1, 1)
    # [B, 3, H*W]
    ray_dirs = K_inv @ pixel_grid.permute(0, 2, 1).contiguous()
    # [B, H*W, 3], in camera coordinates
    seen_points = ray_dirs.permute(0, 2, 1).contiguous() * depth.view(batch_size, H*W, 1)

    return seen_points

def to_hom(X):
    '''
    X: [B, N, 3]
    Returns:
        X_hom: [B, N, 4]
    '''
    X_hom = torch.cat([X, torch.ones_like(X[..., :1])], dim=-1)
    return X_hom

def world2cam(X_world, pose):
    '''
    X_world: [B, N, 3]
    pose: [B, 3, 4]
    Returns:
        X_cam: [B, N, 3]
    '''
    X_hom = to_hom(X_world)
    X_cam = X_hom @ pose.transpose(-1, -2)
    return X_cam

def cam2img(X_cam, cam_intr):
    '''
    X_cam: [B, N, 3]
    cam_intr: [B, 3, 3]
    Returns:
        X_img: [B, N, 3]
    '''
    X_img = X_cam @ cam_intr.transpose(-1, -2)
    return X_img

def proj_points(opt, points, intr, pose):
    '''
    points: [B, N, 3]
    intr: [B, 3, 3]
    pose: [B, 3, 4]
    '''
    # [B, N, 3]
    points_cam = world2cam(points, pose)
    # [B, N]
    depth = points_cam[..., 2]
    # [B, N, 3]
    points_img = cam2img(points_cam, intr)
    # [B, N, 2]
    points_2D = points_img[..., :2] / points_img[..., 2:]
    return points_2D, depth

def azim_to_rotation_matrix(azim, representation='angle'):
    """Azim is angle with vector +X, rotated in XZ plane"""
    if representation == 'rad':
        # [B, ]
        cos, sin = torch.cos(azim), torch.sin(azim)
    elif representation == 'angle':
        # [B, ]
        azim = azim * np.pi / 180
        cos, sin = torch.cos(azim), torch.sin(azim)
    elif representation == 'trig':
        # [B, 2]
        cos, sin = azim[:, 0], azim[:, 1]
    R = torch.eye(3, device=azim.device)[None].repeat(len(azim), 1, 1)
    zeros = torch.zeros(len(azim), device=azim.device)
    R[:, 0, :] = torch.stack([cos, zeros, sin], dim=-1)
    R[:, 2, :] = torch.stack([-sin, zeros, cos], dim=-1)
    return R

def elev_to_rotation_matrix(elev, representation='angle'):
    """Angle with vector +Z in YZ plane"""
    if representation == 'rad':
        # [B, ]
        cos, sin = torch.cos(elev), torch.sin(elev)
    elif representation == 'angle':
        # [B, ]
        elev = elev * np.pi / 180
        cos, sin = torch.cos(elev), torch.sin(elev)
    elif representation == 'trig':
        # [B, 2]
        cos, sin = elev[:, 0], elev[:, 1]
    R = torch.eye(3, device=elev.device)[None].repeat(len(elev), 1, 1)
    R[:, 1, 1:] = torch.stack([cos, -sin], dim=-1)
    R[:, 2, 1:] = torch.stack([sin, cos], dim=-1)
    return R

def roll_to_rotation_matrix(roll, representation='angle'):
    """Angle with vector +X in XY plane"""
    if representation == 'rad':
        # [B, ]
        cos, sin = torch.cos(roll), torch.sin(roll)
    elif representation == 'angle':
        # [B, ]
        roll = roll * np.pi / 180
        cos, sin = torch.cos(roll), torch.sin(roll)
    elif representation == 'trig':
        # [B, 2]
        cos, sin = roll[:, 0], roll[:, 1]
    R = torch.eye(3, device=roll.device)[None].repeat(len(roll), 1, 1)
    R[:, 0, :2] = torch.stack([cos, sin], dim=-1)
    R[:, 1, :2] = torch.stack([-sin, cos], dim=-1)
    return R

def get_rotation_sphere(azim_sample=4, elev_sample=4, roll_sample=4, scales=[1.0], device='cuda'):
    rotations = []
    azim_range = [0, 360]
    elev_range = [0, 360]
    roll_range = [0, 360]
    azims = np.linspace(azim_range[0], azim_range[1], num=azim_sample, endpoint=False)
    elevs = np.linspace(elev_range[0], elev_range[1], num=elev_sample, endpoint=False)
    rolls = np.linspace(roll_range[0], roll_range[1], num=roll_sample, endpoint=False)
    for scale in scales:
        for azim in azims:
            for elev in elevs:
                for roll in rolls:
                    Ry = azim_to_rotation_matrix(torch.tensor([azim]))
                    Rx = elev_to_rotation_matrix(torch.tensor([elev]))
                    Rz = roll_to_rotation_matrix(torch.tensor([roll]))
                    R_permute = torch.tensor([
                        [-1, 0, 0],
                        [0, 0, -1],
                        [0, -1, 0]
                    ]).float().to(Ry.device).unsqueeze(0).expand_as(Ry)
                    R = scale * Rz@Rx@Ry@R_permute
                    rotations.append(R.to(device).float())
    return torch.cat(rotations, dim=0)