File size: 6,593 Bytes
414b431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# modified from https://github.com/EPFL-VILAB/omnidata
import torch
import torch.nn as nn
import numpy as np

def masked_l1_loss(preds, target, mask_valid):
    element_wise_loss = abs(preds - target)
    element_wise_loss[~mask_valid] = 0
    return element_wise_loss.sum() / (mask_valid.sum() + 1.e-6)

def compute_scale_and_shift(prediction, target, mask):
    # system matrix: A = [[a_00, a_01], [a_10, a_11]]
    a_00 = torch.sum(mask * prediction * prediction, (1, 2))
    a_01 = torch.sum(mask * prediction, (1, 2))
    a_11 = torch.sum(mask, (1, 2))

    # right hand side: b = [b_0, b_1]
    b_0 = torch.sum(mask * prediction * target, (1, 2))
    b_1 = torch.sum(mask * target, (1, 2))

    # solution: x = A^-1 . b = [[a_11, -a_01], [-a_10, a_00]] / (a_00 * a_11 - a_01 * a_10) . b
    x_0 = torch.zeros_like(b_0)
    x_1 = torch.zeros_like(b_1)

    det = a_00 * a_11 - a_01 * a_01
    valid = det.nonzero()

    x_0[valid] = (a_11[valid] * b_0[valid] - a_01[valid] * b_1[valid]) / (det[valid] + 1e-6)
    x_1[valid] = (-a_01[valid] * b_0[valid] + a_00[valid] * b_1[valid]) / (det[valid] + 1e-6)

    return x_0, x_1


def masked_shift_and_scale(depth_preds, depth_gt, mask_valid):
    depth_preds_nan = depth_preds.clone()
    depth_gt_nan = depth_gt.clone()
    depth_preds_nan[~mask_valid] = np.nan
    depth_gt_nan[~mask_valid] = np.nan

    mask_diff = mask_valid.view(mask_valid.size()[:2] + (-1,)).sum(-1, keepdims=True) + 1

    # flatten spatial dimension and take valid median [B, 1, 1, 1]
    t_gt = depth_gt_nan.view(depth_gt_nan.size()[:2] + (-1,)).nanmedian(-1, keepdims=True)[0].unsqueeze(-1)
    t_gt[torch.isnan(t_gt)] = 0
    # subtract median and set invalid position to 0
    diff_gt = torch.abs(depth_gt - t_gt)
    diff_gt[~mask_valid] = 0
    # get the avg abs diff value over valid regions [B, 1, 1, 1]
    s_gt = (diff_gt.view(diff_gt.size()[:2] + (-1,)).sum(-1, keepdims=True) / mask_diff).unsqueeze(-1)
    # normalize
    depth_gt_aligned = (depth_gt - t_gt) / (s_gt + 1e-6)

    # same as gt normalization
    t_pred = depth_preds_nan.view(depth_preds_nan.size()[:2] + (-1,)).nanmedian(-1, keepdims=True)[0].unsqueeze(-1)
    t_pred[torch.isnan(t_pred)] = 0
    diff_pred = torch.abs(depth_preds - t_pred)
    diff_pred[~mask_valid] = 0
    s_pred = (diff_pred.view(diff_pred.size()[:2] + (-1,)).sum(-1, keepdims=True) / mask_diff).unsqueeze(-1)
    depth_pred_aligned = (depth_preds - t_pred) / (s_pred + 1e-6)

    return depth_pred_aligned, depth_gt_aligned


def reduction_batch_based(image_loss, M):
    # average of all valid pixels of the batch

    # avoid division by 0 (if sum(M) = sum(sum(mask)) = 0: sum(image_loss) = 0)
    divisor = torch.sum(M)

    if divisor == 0:
        return 0
    else:
        return torch.sum(image_loss) / divisor


def reduction_image_based(image_loss, M):
    # mean of average of valid pixels of an image

    # avoid division by 0 (if M = sum(mask) = 0: image_loss = 0)
    valid = M.nonzero()

    image_loss[valid] = image_loss[valid] / M[valid]

    return torch.mean(image_loss)



def gradient_loss(prediction, target, mask, reduction=reduction_batch_based):

    M = torch.sum(mask, (1, 2))

    diff = prediction - target
    diff = torch.mul(mask, diff)

    grad_x = torch.abs(diff[:, :, 1:] - diff[:, :, :-1])
    mask_x = torch.mul(mask[:, :, 1:], mask[:, :, :-1])
    grad_x = torch.mul(mask_x, grad_x)

    grad_y = torch.abs(diff[:, 1:, :] - diff[:, :-1, :])
    mask_y = torch.mul(mask[:, 1:, :], mask[:, :-1, :])
    grad_y = torch.mul(mask_y, grad_y)

    image_loss = torch.sum(grad_x, (1, 2)) + torch.sum(grad_y, (1, 2))

    return reduction(image_loss, M)



class SSIMAE(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, depth_preds, depth_gt, mask_valid):
        depth_pred_aligned, depth_gt_aligned = masked_shift_and_scale(depth_preds, depth_gt, mask_valid)
        ssi_mae_loss = masked_l1_loss(depth_pred_aligned, depth_gt_aligned, mask_valid)
        return ssi_mae_loss


class GradientMatchingTerm(nn.Module):
    def __init__(self, scales=4, reduction='batch-based'):
        super().__init__()

        if reduction == 'batch-based':
            self.__reduction = reduction_batch_based
        else:
            self.__reduction = reduction_image_based

        self.__scales = scales

    def forward(self, prediction, target, mask):
        total = 0

        for scale in range(self.__scales):
            step = pow(2, scale)

            total += gradient_loss(prediction[:, ::step, ::step], target[:, ::step, ::step],
                                   mask[:, ::step, ::step], reduction=self.__reduction)

        return total


class MidasLoss(nn.Module):
    def __init__(self, alpha=0.1, scales=4, reduction='image-based', inverse_depth=True, shrink_mask=False):
        super().__init__()

        self.__ssi_mae_loss = SSIMAE()
        self.__gradient_matching_term = GradientMatchingTerm(scales=scales, reduction=reduction)
        self.__alpha = alpha
        self.inverse_depth = inverse_depth
        self.shrink_mask = shrink_mask

    # decrease valid region via min-pooling
    @torch.no_grad()
    def erode_mask(self, mask, max_pool_size=4):
        mask_float = mask.float()
        h, w = mask_float.shape[2], mask_float.shape[3]
        mask_float = 1 - mask_float
        mask_float = torch.nn.functional.max_pool2d(mask_float, kernel_size=max_pool_size)
        mask_float = torch.nn.functional.interpolate(mask_float, (h, w), mode='nearest')
        # only if a 4x4 region is all valid then we make that valid
        mask_valid = mask_float == 0
        return mask_valid

    def forward(self, prediction_raw, target_raw, mask_raw):
        if self.shrink_mask:
            mask = self.erode_mask(mask_raw)
        else:
            mask = mask_raw > 0.5
        ssi_loss = self.__ssi_mae_loss(prediction_raw, target_raw, mask)
        if self.__alpha <= 0:
            return ssi_loss
        
        if self.inverse_depth:
            prediction = 1 / (prediction_raw.squeeze(1) + 1e-6)
            target = 1 / (target_raw.squeeze(1) + 1e-6)
        else:
            prediction = prediction_raw.squeeze(1)
            target = target_raw.squeeze(1)
        # gradient loss
        scale, shift = compute_scale_and_shift(prediction, target, mask.squeeze(1))
        prediction_ssi = scale.view(-1, 1, 1) * prediction + shift.view(-1, 1, 1)
        reg_loss = self.__gradient_matching_term(prediction_ssi, target, mask.squeeze(1))
        total = ssi_loss + self.__alpha * reg_loss

        return total