File size: 3,580 Bytes
bbfcc3f
 
 
4419e3c
bbfcc3f
2ba8a65
bbfcc3f
 
 
6754b51
 
 
 
 
bbfcc3f
 
2ba8a65
bbfcc3f
 
 
 
 
 
 
 
 
2ba8a65
 
bbfcc3f
 
2467fe0
bbfcc3f
 
 
 
 
 
2ba8a65
bbfcc3f
 
 
 
 
 
 
2ba8a65
bbfcc3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa0430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2467fe0
2ee4ae2
2467fe0
 
 
aa0430b
e9fcbbe
aa0430b
bbfcc3f
f7680bc
2ee4ae2
f7680bc
660cad9
c038dfe
2ee4ae2
c038dfe
2467fe0
4fbc7de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.chat_models import AzureChatOpenAI
from langchain.llms import OpenAI
from langchain.chains.conversation.memory import ConversationBufferWindowMemory

import os


OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
OPENAI_API_BASE = os.getenv("OPENAI_API_BASE")
#llm = ChatOpenAI(openai_api_key=OPENAI_API_KEY, temperature=0, model_name='gpt-3.5-turbo',openai_api_base=OPENAI_API_BASE)
llm = AzureChatOpenAI(deployment_name="bitservice_chat_35",openai_api_base=OPENAI_API_BASE,openai_api_key=OPENAI_API_KEY,openai_api_version="2023-03-15-preview",model_name="gpt-3.5-turbo")


import torch
from transformers import BlipProcessor, BlipForConditionalGeneration

image_to_text_model = "Salesforce/blip-image-captioning-large"
device = 'cuda' if torch.cuda.is_available() else 'cpu'

processor = BlipProcessor.from_pretrained(image_to_text_model)
model = BlipForConditionalGeneration.from_pretrained(image_to_text_model).to(device)

from transformers.models.oneformer.modeling_oneformer import OneFormerModelOutput
import requests
from PIL import Image

def describeImage(image_url):
  image_object = Image.open(image_url).convert('RGB')
  # image
  inputs = processor(image_object, return_tensors="pt").to(device)
  outputs = model.generate(**inputs)
  return processor.decode(outputs[0], skip_special_tokens=True)


from langchain.tools import BaseTool

class DescribeImageTool(BaseTool):
    name = "Describe Image Tool"
    description = 'use this tool to describe an image.'

    def _run(self, url: str):
        description = describeImage(url)
        return description
    
    def _arun(self, query: str):
        raise NotImplementedError("Async operation not supported yet")

tools = [DescribeImageTool()]


agent = initialize_agent(
    agent='chat-conversational-react-description',
    tools=tools,
    llm=llm,
    verbose=True,
    max_iterations=3,
    early_stopping_method='generate',
    memory=ConversationBufferWindowMemory(
        memory_key='chat_history',
        k=5,
        return_messages=True
    )
)

from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
def enToChinese(english):
    #ch = llm_fy("Please translate the following sentence from English to Chinese:"+english)
    #return ch
    pp = "Please translate the following sentence from English to Chinese:{english}"
    prompt = PromptTemplate(
           input_variables=["english"],
           template=pp
    )
    llchain=LLMChain(llm=llm,prompt=prompt)
    return llchain.run(english)
    

def chToEnglish(chinese):
    #en = llm_fy("Please translate the following sentence from Chinese to English:"+chinese)
    #return en
    pp = "Please translate the following sentence from Chinese to English:{chinese}"
    prompt = PromptTemplate(
           input_variables=["chinese"],
           template=pp
    )
    llchain=LLMChain(llm=llm,prompt=prompt)
    return llchain.run(chinese)

import gradio as gr
def segment(image,text):
    #pass  # Implement your image segmentation model here...
    print(image)
    image_url = image
    text = chToEnglish(text)
    print(text)
    return enToChinese(agent(f"{text}:\n{image_url}").get('output'))

demo = gr.Interface(
    fn=segment,
    inputs=[
        gr.Image(type="filepath",shape=(200, 200),label="请选择一张图片"),
        gr.components.Textbox(label="请输入问题"),
    ],  
    outputs=[gr.components.Textbox(label="答案",lines=4)])
demo.launch()