Spaces:
Runtime error
Runtime error
File size: 93,564 Bytes
a987248 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 |
# %%
import datetime
import gradio as gr
from io import BytesIO
import numpy as np
import numpy as np
import tiktoken
import pandas as pd
from utils.functions import load_csv
from wordcloud import WordCloud
import matplotlib.pyplot as plt
plt.switch_backend('Agg')
import requests
import umap
from sklearn.feature_extraction.text import TfidfVectorizer
import hdbscan
import plotly.express as px
import plotly.graph_objects as go
import plotly.express as px
from langchain.chat_models import ChatOpenAI
import os
from langchain.agents import load_tools
from langchain.agents import initialize_agent, create_pandas_dataframe_agent
from langchain.llms import OpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
import gradio as gr
import openai
import pandas as pd
import numpy as np
import re
import whisper
import openai
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
import networkx as nx
import matplotlib.pyplot as plt
from langchain import OpenAI, PromptTemplate, LLMChain
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.llms import OpenAI
from langchain.document_loaders import YoutubeLoader
from langchain.chains.summarize import load_summarize_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from langchain.document_loaders import YoutubeLoader
import time
import re
import pinecone
import pandas as pd
from sentence_transformers import SentenceTransformer, util
#import numpy as np
from langchain.embeddings import HuggingFaceEmbeddings, OpenAIEmbeddings
from sklearn.metrics import silhouette_score
import torch
import nltk
nltk.download('vader_lexicon')
from dotenv import load_dotenv
load_dotenv()
gradio_css = os.getenv("GRADIO_CSS")
gradio_js = os.getenv("GRADIO_JS")
rubik_backend = os.getenv("RUBIK_BACKEND")
openapi_key = os.getenv("OPENAI_API_KEY")
wolfram_alpha_appid = os.getenv("WOLFRAM_ALPHA_APPID")
#for versioning
ra = np.random.randint(1000000)
os.environ['OPENAI_API_KEY'] = openapi_key
os.environ['WOLFRAM_ALPHA_APPID'] = wolfram_alpha_appid
def get_key(item):
return item['label']
def get_emotion_bertweet(dataset):
tokenizer4 = AutoTokenizer.from_pretrained("finiteautomata/bertweet-base-emotion-analysis", truncation=True)
model4 = AutoModelForSequenceClassification.from_pretrained("finiteautomata/bertweet-base-emotion-analysis")
nlp = pipeline('sentiment-analysis', model=model4,
tokenizer=tokenizer4, top_k=6, truncation=True, device=device)
top_emotion = []
# apply emotion model on data and get the labels and scores
for i in range(len(dataset)):
label = []
score = []
jsonfile = (nlp(dataset['translated_text'].iloc[i]))
jsonfile[0].sort(key=get_key)
for j in range(0, 6):
jsonfile2 = np.array(jsonfile)
label.append(jsonfile2[0][j]['label'])
score.append(jsonfile2[0][j]['score'])
top_emotion.append(label[score.index(max(score))])
dataset['top_emotion_bertweet'] = top_emotion
print(jsonfile2)
return dataset
model_name = "sentence-transformers/all-MiniLM-L6-v2"
hf = HuggingFaceEmbeddings(model_name=model_name)
embeddings = OpenAIEmbeddings()
# pinecone.init(
# api_key='ENTER API KEY HERE',
# environment='us-central1-gcp'
# )
# index_name = 'openaigradio'
def markdown_to_html(md_string):
# html_string = markdown.markdown(md_string)
return md_string
tokenizer4 = AutoTokenizer.from_pretrained("finiteautomata/bertweet-base-emotion-analysis", truncation=True)
model4 = AutoModelForSequenceClassification.from_pretrained("finiteautomata/bertweet-base-emotion-analysis")
openai.api_key = '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'
model_whisp = whisper.load_model("base")
llm = OpenAI(temperature=0.2, model_name='text-davinci-003', max_tokens=1000, top_p=1)
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# check if cpu or gpu
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = model.to(device)
# %%
Industries = ['Agriculture',
'Automobile Manufacturing',
'Banking and Finance',
'Biotechnology',
'Chemicals and Petrochemicals',
'Construction and Engineering',
'Consumer Goods and Retail',
'Education',
'Electronics',
'Energy (Oil, Gas, Coal, and Renewable Energy)',
'Entertainment and Media',
'Food and Beverage',
'Healthcare and Pharmaceuticals',
'Hospitality, Travel, and Tourism',
'Information Technology (IT) and Software',
'Insurance',
'Manufacturing (various sectors)',
'Mining and Metals',
'Real Estate',
'Renewable Energy (Solar, Wind, Hydro, Geothermal)',
'Telecommunications',
'Textiles and Apparel',
'Transportation and Logistics',
'Utilities (Electricity, Water, Gas)',
'Waste Management and Environmental Services']
def get_memory():
memory_string = ''
for i,j in memory.items():
print(i, j)
memory_string += str(j) + '\n'
return memory_string
def check_words_in_string(word_list, input_string, case=False):
input_string = input_string.lower()
# Convert words to lowercase if case is False
word_list = [word.lower() if case else word for word in word_list]
# Check if any word is in the input_string
result = any(word in input_string for word in word_list)
# check if True
if result:
return True
else:
return False
# Will be used by the Langchain chatbot
words = ['rows', 'data', 'length', 'dataset','plot', 'col','columns','column', 'max', 'min', 'minimum', 'maximum', 'visualize','visualise','represent','graph','chart','plot','diagram','illustrate','show','depict','display','count','number','sum','total','aggregate','trend','pattern','distribution','average','linechart','scatter','barchart','piechart','histogram','boxplot','heatmap','correlation','regression','forecast','predict']
memory = {'agent':[], 'user':[]}
def get_topic_cluster(dataframe, graph_type = None,filename = None):
print(filename)
if (dataframe is None):
# return None,None, '<h1>Please click "Launch" on the left sidebar.</h1>', '<h1>Please click "Launch" on the left.</h1>', "Executive Summary"
return None, None, None, None, None, '<span id="clusterx"></span>', '<h1>Please click "Launch" on the left sidebar.</h1>', "<span class='hsub'>Analysis:</span>Topic Cluster"
reduce_dim = umap.UMAP(
n_components=3, n_neighbors=8, min_dist=0.55)
df = dataframe.copy()
# some cleaning for reddit datasets
df = df[df['translated_text'] != 'nan']
df = df[df['translated_text'] != '[deleted]']
df = df[df['translated_text'] != '[removed]']
# if filename + 'df3.csv' exists load csv
if os.path.exists(filename + 'df3.csv'):
df3 = pd.read_csv(filename + 'df3.csv')
df2 = df3
else:
def CleanTxt_quotes(text):
text = re.sub(r'https?:\/\/\S+', '', text) # Remove hyperlinks
text = re.sub(r'http?:\/\/\S+', '', text) # Remove hyperlinks
# if more than 5 mentions, remove all mention
if len(re.findall(r'@[A-Za-z0-9]+', text)) > 5:
text = re.sub(r'@[A-Za-z0-9]+', '', text)
# if more than 4 hashtags, remove all hashtags
#text = re.sub(r'[^A-Za-z0-9.!?_#@]+', ' ', text) # Remove non-alphanumeric characters except exclamation marks and question marks
text = re.sub(r'\s+', ' ', text) # Remove extra whitespace
return text
df['clean_text'] = df['translated_text'].apply(lambda x: str(x))
df['clean_text'] = df['translated_text'].apply(lambda x: CleanTxt_quotes(x))
embedding = np.array([np.array(xi)
for xi in df.embeddings])
umap_embeddings = reduce_dim.fit_transform(embedding)
print('umap_embeddings', umap_embeddings.shape)
# CHECK THIS LINE
df['x'] = umap_embeddings[:, 0]
df['y'] = umap_embeddings[:, 1]
df['z'] = umap_embeddings[:, 2]
df.dropna(inplace=True)
hdbscan_min_samples = 1
hdbscan_minimal_cluster_size = int(len(df) * 0.01+40)
# hdbscan_minimal_cluster_size = 7
# hdbscan_min_samples = 10
cluster = hdbscan.HDBSCAN(
min_cluster_size=hdbscan_minimal_cluster_size,
metric='euclidean',
cluster_selection_epsilon=0.001,
cluster_selection_method='leaf',
algorithm='best',
prediction_data=False,
min_samples=hdbscan_min_samples).fit(df[['x', 'y', 'z']])
cluster_analysis = len(pd.Series(cluster.labels_).unique())
print('Number of Sentences = ', len(df))
print('Number of Clusters = ', cluster_analysis, '/n')
df_cluster = pd.DataFrame(
pd.DataFrame(cluster.labels_).value_counts())
print(df_cluster)
clusters = pd.DataFrame(cluster.labels_)
# percent_unlabelled = round((len(df[clusters[0] == -1]) / len(df)) * 100, 2)
# print('The percentage of unlabelled sentences is: ', percent_unlabelled, '%')
# reindex
df.reset_index(inplace=True, drop=True)
print(len(df[clusters[0] == -1]))
for i in range(0, cluster_analysis):
print('Cluster ', i, ' has ', len(
df[clusters[0] == i]), ' sentences')
print(df_cluster.index)
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
def get_tfidf_top_features(documents, n_top=4):
tfidf_vectorizer = TfidfVectorizer(
min_df=0.05,
max_df=0.95, max_features=10,
stop_words='english')
tfidf = tfidf_vectorizer.fit_transform(documents)
importance = np.argsort(np.asarray(
tfidf.sum(axis=0)).ravel())[::-1]
tfidf_feature_names = np.array(
tfidf_vectorizer.get_feature_names())
return tfidf_feature_names[importance[:n_top]]
cluster_names = pd.DataFrame(
columns=['cluster_name', 'embed_index'])
for i in range(cluster_analysis):
try:
print(get_tfidf_top_features(
df['clean_text'][clusters[0] == i]))
clstr_nm = get_tfidf_top_features(
df['clean_text'][clusters[0] == i])
clstr_idx = df['clean_text'][clusters[0] == i].index
cluster_names = cluster_names.append(
{'cluster_name': clstr_nm, 'embed_index': clstr_idx}, ignore_index=True)
except Exception as e:
print(e)
# cluster_name.append('NULL')
pass
cluster_names['cluster_name'] = cluster_names['cluster_name'].astype(
str)
cluster_names['cluster_name'] = cluster_names['cluster_name'].str.replace(
'[', '')
cluster_names['cluster_name'] = cluster_names['cluster_name'].str.replace(
']', '')
cluster_names['cluster_name'] = cluster_names['cluster_name'].str.replace(
"'", '')
cluster_names['cluster_name'] = cluster_names['cluster_name'].str.replace(
" ", '-')
clusters_names = cluster_names.explode('embed_index')
df2 = df.merge(clusters_names, left_index=True,
right_on='embed_index')
df2['cluster_name_str'] = df2['cluster_name'].apply(
lambda x: str(x))
# assign a int value to each unique cluster name in df3
df2['cluster_number'] = df2['cluster_name_str'].astype(
'category').cat.codes
df2['trimmed_text'] = df2['clean_text'].str[:175]
print(df2.head())
df3 = df2[['x', 'y', 'z', 'cluster_number',
'cluster_name_str', 'trimmed_text']]
#################################################### GET CLUSTER NAME #############################################
df2['gpt_cluster'] = ''
df3['gpt_cluster'] = ''
for cluster in df3['cluster_name_str'].unique():
each_cluster = df3[df3['cluster_name_str'] == cluster]
docs = '\n'.join(np.random.choice(each_cluster['trimmed_text'], 50))
response3 = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
temperature=0.3,
max_tokens=300,
top_p=1,
# stream=True,
messages=[
{"role": "user", "content": f'Given a list of keywords {cluster}, and documents present in the cluster : {docs}; assign the most relevant topic name for this cluster : \n\n Cluster Name : '},
]
)['choices'][0]['message']['content']
df3.loc[df3['cluster_name_str'] == cluster, 'gpt_cluster'] = response3
df2.loc[df2['cluster_name_str'] == cluster, 'gpt_cluster'] = response3
# print(df3['cluster_name_str'])
# xi = 0
# for cluster in df3['cluster_name_str'].unique():
# xi += 1
# df3.loc[df3['cluster_name_str'] == cluster, 'gpt_cluster'] = cluster#"cluster " + str(xi)
# df2.loc[df2['cluster_name_str'] == cluster, 'gpt_cluster'] = cluster#"cluster " + str(xi)
# save df3
df3.to_csv(filename + 'df3.csv', index=False, encoding='utf-8-sig')
if len(df3) > 10000:
dot_size = 1
else:
dot_size = 4
color_scale = px.colors.sequential.Viridis
color_list = ['#FF0000', '#FF0000', '#FF0000', '#FF0000', '#FF0000', '#FF0000']
fig = px.scatter_3d(df3, x='x', y='y', z='z', color='gpt_cluster', hover_name='trimmed_text', hover_data={
'x': False, 'y': False, 'z': False, 'cluster_name_str': False, 'cluster_number': False, 'gpt_cluster': False}, opacity=1, template='plotly_white')
fig.update_traces(marker=dict(size=dot_size))
fig.add_trace(go.Scatter3d(x=[0], y=[0], z=[0], mode='markers', marker=dict(
size=0.1, color='white'), showlegend=True, name=' ', hoverinfo='none'))
# legend on the right side
fig.update_layout(legend=dict(
bgcolor='rgba(17,17,17,0)',
xanchor='auto',
yanchor='auto',
x=0.8, # Adjust the x position of the legend
y=0.2, # Adjust the y position of the legend
bordercolor='rgba(17,17,17,0)',
borderwidth=0,
))
# fig.update_layout(scene=dict(
# xaxis=dict(
# title=' ',
# nticks=0,
# # backgroundcolor="rgb(0, 0, 0, 1)",
# gridcolor="rgba(17,17,17, 0)",
# showbackground=True,
# zerolinecolor="rgba(17,17,17, 0)",
# zeroline=False,
# showgrid=True,
# showticklabels=False,
# showspikes=False
# ),
# # hide ticks
# yaxis=dict(
# # name
# title=' ',
# nticks=0,
# # backgroundcolor="rgb(0, 0, 0, 1)",
# gridcolor="rgba(17,17,17, 0)",
# showbackground=True,
# zerolinecolor="rgba(17,17,17, 0)",
# zeroline=False,
# showgrid=True,
# showticklabels=False,
# showspikes=False
# ),
# zaxis=dict(
# # name
# title=' ',
# nticks=0,
# # backgroundcolor="rgba(0, 0, 0, 1)",
# gridcolor="rgba(17,17,17, 0)",
# showbackground=True,
# zerolinecolor="rgba(17,17,17, 0)",
# zeroline=False,
# showgrid=True,
# showticklabels=False,
# showspikes=False),)
# # tickvals=[],),
# )
fig.update_layout(coloraxis_showscale=False, width=1300, height=750, legend=dict(x=0, y=1, traceorder='normal', font=dict(size=14, color='black'), bgcolor='rgba(17,17,17,0)', bordercolor='rgba(17,17,17,0)', borderwidth=0))
# TO ADD AN IMAGE UNCOMMENT
# fig.add_layout_image(
# dict(
# source=<SOURCE>,
# xref="x",
# yref="y",
# x=-1,
# y=3.8,
# # xanchor = "left",
# # yanchor = "top",
# sizex=.4,
# sizey=.4,
# opacity=1,
# layer="above",
# )
# )
fig.update_layout(legend={'itemsizing': 'constant'}, legend_title_text=' ', legend_title_font_color='black',
legend_font_color='black', legend_font_size=14, legend_bgcolor='rgba(17,17,17,0)', legend_bordercolor='rgba(17,17,17,0)', legend_borderwidth=2)
# , title_font_size=30, title_font_family='Arial', title_font_color='white', title_x=0.06, title_y=0.95, title_xanchor='left', title_yanchor='top', title_text='Cluster of Emotions for {}/n n = {}'.format(subreddit, len(dataset_umap)), margin=dict(l=0, r=0, b=0, t=0, pad=0))
fig.update_layout(scene_camera_eye=dict(x=0.87, y=-0.88, z=0.84), scene_camera_center=dict(
x=0, y=0, z=0), template='plotly_white', hovermode='x unified', margin=dict(l=0, r=0, b=0, t=0, pad=2))
fig.update_layout(coloraxis_showscale=True)
fig.update_xaxes(showticklabels=True, showgrid=False, zeroline=False,
showline=True, automargin=False, showspikes=False)
fig.update_yaxes(showticklabels=True, showgrid=False, zeroline=False,
showline=True, automargin=False, showspikes=False)
#full_html=False, include_plotlyjs='cdn', default_height='750px', default_width='1500px', config={'displaylogo': False, 'modeBarButtonsToRemove': ['zoom2d', 'pan2d', 'select2d', 'lasso2d', 'zoomIn2d', 'zoomOut2d', 'autoScale2d', 'resetScale2d', 'hoverClosestCartesian', 'hoverCompareCartesian', 'zoom3d', 'pan3d', 'resetCameraDefault3d', 'resetCameraLastSave3d', 'hoverClosest3d', 'orbitRotation', 'tableRotation', 'zoomInGeo', 'zoomOutGeo', 'resetGeo', 'hoverClosestGeo', 'toImage', 'sendDataToCloud', 'hoverClosestGl2d', 'hoverClosestPie', 'toggleHover', 'resetViews', 'toggleSpikelines', 'resetViewMapbox']})}
cluster_name = df3[['cluster_number', 'gpt_cluster']]
cluster_name = cluster_name.drop_duplicates()
cluster_name = cluster_name.sort_values(by=['cluster_number'])
cluster_name = cluster_name.reset_index(drop=True)
# create a list
cluster_name_list = cluster_name['gpt_cluster'].tolist()
cluster_name_list = '\n'.join(cluster_name_list)
Silhouette_Score = 'Silhouette score is : ', silhouette_score(df3[['x', 'y', 'z']], df3['gpt_cluster'], metric='euclidean')
# get a dataframe of unique cluster names and their count
cluster_count = df3.groupby('gpt_cluster').agg({'cluster_number': 'count'}).reset_index()
cluster_count = cluster_count.rename(columns={'cluster_number': 'count', 'gpt_cluster': 'Cluster'})
# return fig, cluster_count, cluster_name_list, Silhouette_Score, df2
return fig, cluster_count, cluster_name_list, None, df2, '<span id="clusterx"></span>', "<b>Please check 'Graph' tab for more details.</b>", "<span class='hsub'>Analysis:</span>Topic Cluster"
def get_executive_summary(dataframe=None, brand=None, industry=None, summaries=None, csv_file= None, graph_type = None,filename = None, fullProjectData= None, sourceIndex = 0):
# if data_answer.txt exists, open and read
sourceData = fullProjectData['sources'][int(sourceIndex)]
externalPrompt = sourceData['content']['exec_sum']
if (dataframe is None):
return None,None,'<span id="executive"></span>', '<h1>Please click "Launch" on the left sidebar.</h1>', "<span class='hsub'>Analysis:</span>Executive Summary"
if os.path.exists(filename + 'Executive Summary_CACHE.txt'):
with open(filename + 'Executive Summary_CACHE.txt', 'r') as f:
output_summary = f.read()
return output_summary, dataframe[['translated_text']], '<span id="executive"></span>', markdown_to_html(output_summary), "<span class='hsub'>Analysis:</span>Executive Summary"
else:
if brand is None:
brand = ' '
else :
brand = brand
try:
dataframe = dataframe[dataframe['translated_text'].str.contains(brand, case=False)]
except:
pass
text_splitter = TokenTextSplitter.from_tiktoken_encoder(
encoding_name='p50k_base',
chunk_size = 2000,
)
splitted_articles = text_splitter.split_text(''.join(dataframe['translated_text']))
summarize_template = """ {text} \n\n
Summarize the most relevant information for an executive summary from the above document:
SUMMARY: """
prompt_template = PromptTemplate(input_variables=['text'], template=summarize_template)
summary_chain = LLMChain(llm=llm, prompt=prompt_template)
summaries = []
for i in splitted_articles:
summaries.append(summary_chain.run(i))
summaries1 = '/n'.join(summaries)
word_count = 500
#If needed, guess the industry
# industry_template = PromptTemplate(input_variables=['summaries'], template=extract_industry)
# summary_chain = LLMChain(llm=llm, prompt=industry_template)
# industry = summary_chain.run(summaries)
#Check size of output and go in a 2nd loop if it's too big
encoding = tiktoken.get_encoding('p50k_base')
if len(encoding.encode(summaries1)) > 2000:
# return only first 2000 tokens
summaries1 = encoding.decode(encoding.encode(summaries1)[:2000])
executive_summary_template = '''Imagine you are an Elite Analyst, Expert Sociologist, and Data Guru,
Your task is to leverage your invaluable expertise in crafting a comprehensive and insightful {word_count} words executive summary tailored for C-level executives and decision-makers in {industry}.
The summary should synthesize information from various data sources, incorporate relevant cultural and contextual elements, and provide valuable insights that can drive strategic decision-making.
Please ensure that your analysis meets the following high-level objectives:
Thoroughly examine and interpret the key trends, patterns, and insights derived from the following data sources:
{summaries1}
Articulate the implications and opportunities for {industry}, keeping in mind the needs and challenges of the industry.
Consider the cultural, social, and contextual nuances present in the data, drawing on your sociological expertise to ensure the summary remains relevant and insightful across diverse audiences.
Identify any potential risks or challenges that might arise from the data, providing strategic recommendations for mitigating these issues.
Present the information in a clear, concise, and engaging manner that captures the attention of busy executives and effectively communicates the key insights.
Leverage your data expertise to ensure the accuracy, reliability, and relevance of the information presented in the summary. Make us benefit from your unique expertise and insights.
Using markdown formatting, write a {word_count} word SEQ-optimized Executive Summary. Write a click worthy short titles. Add a key takeaway
section at the end. Use the seed keyword as the first H2. Always use a combination of paragraphs, lists, and tables for a better reader experience. For the styling of the output, please include headers for different sections, and use bullet points where applicable to organize the key insights.
To avoid repetition, vary the sentence structure and word choice when presenting information from different data sources or discussing various trends, insights, or opportunities.
Using synonyms, alternate phrasings, and modifying sentence structure can help keep the text engaging and fresh for readers.
To avoid repetition, vary the sentence structure and word choice when presenting information from different data sources or discussing various trends, insights, or opportunities. Using synonyms, alternate phrasings, and modifying sentence structure can help keep the text engaging and fresh for readers.
In order to maintain reader engagement and deliver a captivating text, please ensure that you diversify sentence structure and word choice when presenting insights, trends, or opportunities from different data sources. Employ synonyms, alternative expressions, and varied sentence patterns to provide a fresh and dynamic reading experience.
\n\n
'''
if externalPrompt and externalPrompt != "":
executive_summary_template = externalPrompt
prompt = PromptTemplate(template=executive_summary_template, input_variables=['industry', 'word_count', 'summaries1'])
print("start sum")
# llm2 = OpenAI(temperature=0.2, model_name='gpt-4', max_tokens=1000, top_p=1)
llm2 = ChatOpenAI(temperature=0.2, model_name='gpt-4', max_tokens=1000, top_p=1)
executive_chain = LLMChain(llm=llm2, prompt=prompt)
output_summary = executive_chain.run(industry=industry, word_count=word_count, summaries1=summaries1)
# output_summary = executive_chain.run(industry=industry, word_count=word_count, summaries1=summaries1)
with open(filename + "Executive Summary_CACHE.txt", "a") as f:
try:
f.write(output_summary)
except:
pass
# dataframe.rename(columns={'translated_text': 'Table'}, inplace=True)
# return("# Executive summary" + output_summary, dataframe[['translated_text']], markdown_to_html(output_summary), 1, markdown_to_html("# Executive Summary\n\n" + output_summary), "Executive Summary")
return output_summary, dataframe[['translated_text']], '<span id="executive"></span>', markdown_to_html(output_summary), "<span class='hsub'>Analysis:</span>Executive Summary"
return(output_summary, dataframe[['translated_text']][0:20], summaries, output_summary)
def get_competitive(brand, industry, graph_type = None, filename = None,dataframe = None,fullProjectData= None, sourceIndex = 0):
sourceData = fullProjectData['sources'][int(sourceIndex)]
externalPrompt = sourceData['content']['competitor']
if dataframe is None:
return(None,'<span id="competitive"></span>', '<h1>Please click "Launch" on the left sidebar.</h1>', "<span class='hsub'>Analysis:</span>Competitor Analysis")
if os.path.exists(filename + 'Competitor_CACHE.txt'):
with open(filename + 'Competitor_CACHE.txt', 'r') as f:
output_summary = f.read()
return(output_summary,'<span id="competitive"></span>', markdown_to_html("# Competitor Analysis\n\n"+output_summary), "<span class='hsub'>Analysis:</span>Competitor Analysis")
else:
competitive_prompt = '''
Ignore all previous instructions. Do not rush. Make this impactful and clear.
•Read through all the bullet points and make sure you understand all the bullet points, before you start working.
• Act as a subject matter expert, Business analyst, social media expert and professor with 20 years of research experience.
[IMPORTANT INSTRUCTION]
Your singular task is to provide expert reports with key elements and useful content. Do not make up any information. Do not use jargon.
Start with a short paragraph introducing {brand} position in the market. This should be clear and impactfull.
•I want to learn more about the competitors of brand {brand} in this market {industry}.
[SEPARATOR]
•Use the advanced level of expertise in this market {industry} to create topics and subtopics with detailed notes, this will help provide confidence and clarity about the item being sought.
[SEPARATOR]
1 “Who are the 4 main competitors of {brand}?”
2 “What are the top 3 strengths and weaknesses of each of those competitors?”
3 “What are the unique selling points of our competitors?”
4 “In what unique ways do those competitors market their products/services?”
5 “What are the key trends in the {industry} that those competitors are capitalizing on?”
6 “What are the areas where those competitors excel compared to {brand}?”
7 “What are the areas where our competitors fall short compared to {brand}?”
8 “How do our products/services prices compare to those competitors in terms of quality, price positioning and range?”
9 “What are the common customer complaints about those competitors?”
10 “What are the opportunities for growth in the {industry} that competitors are not taking advantage of?”
•Break down the exercise into easy-to-follow steps.
•For each topic and/or subtopic provide a clear and informative summary that compare and contrast results..
•Identify common mistakes made when addressing those competitive points and address those with maximum clarity.
•Proofread content for accuracy, paying special attention to any terms that may have been substituted or omitted unintentionally.
Conclude with a brief overview of the competitive landscape for "brand" with the top 3 takeaways and opportunities. The format should be markdown, add subheaders (h2 only), format into nice paragraphs.'''
# hardcoded!!!
brand = "Nike"
industry = 'Textiles and Apparel'
prompt = PromptTemplate(template=competitive_prompt, input_variables=['industry', 'brand'])
competition_chain = LLMChain(llm=llm, prompt=prompt)
output_summary = competition_chain.run(industry=industry, brand=brand)
with open(filename + "Competitor_CACHE.txt", "a") as f:
try:
f.write(output_summary)
except:
pass
return(output_summary,'<span id="competitive"></span>', markdown_to_html("# Competitor Analysis\n\n"+output_summary), "<span class='hsub'>Analysis:</span>Competitor Analysis")
# def get_topic_summary(dataframe, topics=None, brand=None, industry=None, graph_type = None, filename = None):
def get_trend_summary(dataframe, topics=None, brand=None, industry=None, graph_type = None, filename = None,fullProjectData= None, sourceIndex = 0):
sourceData = fullProjectData['sources'][int(sourceIndex)]
externalPrompt = sourceData['content']['trend_analysis']
if (dataframe is None):
return None,None, '<span id="trend"></span>','<h1>Please click "Launch" on the left sidebar.</h1>', "<span class='hsub'>Analysis:</span>Executive Summary"
if os.path.exists(filename + 'Trend Analysis_CACHE.txt'):
with open(filename + 'Trend Analysis_CACHE.txt', 'r') as f:
final_summary = f.read()
return(final_summary, dataframe[['translated_text']][0:20], '<span id="trend"></span>', markdown_to_html(final_summary), "<span class='hsub'>Analysis:</span>Trend Analysis")
else:
if brand is None:
brand = ''
else :
brand = brand
try:
dataframe = dataframe[dataframe['translated_text'].str.contains(brand, case=False)]
except:
pass
text_splitter = TokenTextSplitter.from_tiktoken_encoder(
encoding_name='p50k_base',
chunk_size = 2000,
)
splitted_articles = text_splitter.split_text(''.join(dataframe['translated_text']))
summarize_template = """Summarize the most relevant information from the following document:
{text}
SUMMARY: """
prompt_template = PromptTemplate(input_variables=['text'], template=summarize_template)
summary_chain = LLMChain(llm=llm, prompt=prompt_template)
summaries = []
for i in splitted_articles:
summaries.append(summary_chain.run(i))
# split the summary into 2000 tokens chunks
text_splitter = TokenTextSplitter.from_tiktoken_encoder(
encoding_name='p50k_base',
chunk_size = 2000,
)
summaries2 = text_splitter.split_text(''.join(summaries))
word_count = 500
topics = topics
final_summary = []
brand = "Nike"
industry = "Food and Beverage"
for summary_1 in summaries2:
topic_prompt = '''"Imagine you are an Elite Analyst and Trend Analysis Expert with extensive experience in identifying patterns and emerging themes from various data sources, such as social media, regular media, reviews, and survey data. Your task is to leverage your invaluable expertise in crafting a comprehensive and insightful trend analysis report tailored for {brand} within the {industry}. The objective is to provide valuable insights into shifts in consumer behavior, preferences, and market dynamics, enabling informed decision-making for C-level executives and decision-makers.
In your analysis of {word_count} words, ensure that you address the following key elements:
Topics : {topics}
Data: {summary}
Emerging Trends: Identify and discuss the key emerging trends in consumer behavior, preferences, and market dynamics within the {industry}. Examine the factors driving these trends and provide specific examples to illustrate your findings.
Impact on {brand}: Analyze how the identified trends are affecting or could potentially affect {brand}. Consider both opportunities and challenges that may arise from these trends, as well as any necessary adjustments to marketing strategies, product offerings, or customer service initiatives.
Recommendations: Based on the insights derived from the trend analysis, provide actionable recommendations for {brand} to stay ahead of the competition, capitalize on new opportunities, and address potential challenges. Consider innovations, partnerships, or targeted marketing campaigns that can help the company adapt to and benefit from the identified trends.
Ensure that your trend analysis report is clear, concise, and engaging for busy executives. Focus on providing actionable insights and recommendations that can inform the company's strategic direction. Draw on your expertise to ensure the accuracy, reliability, and relevance of the information presented in the analysis."
Using markdown formatting, write a {word_count} word SEQ-optimized Trend Analysis. Write a click worthy short titles. Add a key takeaway
section at the end. Use the seed keyword as the first H2. Always use a combination of paragraphs, lists, and tables for a better reader experience. For the styling of the output, please include headers for different sections, and use bullet points where applicable to organize the key insights.
To avoid repetition, vary the sentence structure and word choice when presenting information. Using synonyms, alternate phrasings, and modifying sentence structure can help keep the text engaging and fresh for readers. \n\n
'''
prompt = PromptTemplate(template=topic_prompt, input_variables=['industry', 'topics', 'word_count', 'summary', 'brand'])
topic_chain = LLMChain(llm=llm, prompt=prompt)
topic_summary = topic_chain.run(industry=industry, topics = topics, word_count=word_count, summary=summary_1, brand=brand)
final_summary.append(topic_summary)
if len(final_summary) > 1:
topic_summary = ''.join(final_summary)
combination = '''{topic_summary}\n\nCombine the content from these articles into one; keeping the format and structure in place. \n\n##Trend Analysis:\n\n'''
prompt = PromptTemplate(template=combination, input_variables=['topic_summary'])
final_chain = LLMChain(llm=llm, prompt=prompt)
final_summary = final_chain.run(topic_summary=topic_summary)
else:
final_summary = final_summary[0]
with open(filename + "Trend Analysis_CACHE.txt", "a") as f:
try:
f.write(final_summary)
except:
pass
# dataframe.rename(columns={'translated_text': 'Table'}, inplace=True)
return("# Trend Analysis\n" + final_summary, dataframe[['translated_text']][0:20], '<span id="trend"></span>', markdown_to_html(''+final_summary), "<span class='hsub'>Analysis:</span>Trend Analysis")
def get_SWOT(dataframe, brand = None, industry = None, exec_summary=None, graph_type= None, filename = None,fullProjectData= None, sourceIndex = 0):
sourceData = fullProjectData['sources'][int(sourceIndex)]
externalPrompt = sourceData['content']['swot_']
if (dataframe is None):
return(None,'<span id="swotx"></span>', '<h1>Please click "Launch" on the left sidebar.</h1>', "<span class='hsub'>Analysis:</span>SWOT")
brand = 'Nike'
industry = 'Textiles and Apparel'
if brand is None:
brand = ' '
else :
brand = brand
try:
dataframe = dataframe[dataframe['translated_text'].str.contains(brand, case=False)]
except:
pass
# if exec_summary is None:
#
exec_summary = '''
# Mozzarella Sticks: A Versatile Snack Food with Endless Possibilities
## Introduction
Mozzarella sticks are a popular snack food that can be enjoyed in a variety of ways. They can be eaten alone, dipped in sauces, used as a topping on pizzas, or even turned into vape flavors. Mozzarella sticks can also be used to make creative dishes such as a mozzarella stick bowl, a mozzarella stick cake, or a mozzarella stick twinkie. They can also be used as a prank, such as paying per mozzarella stick. Mozzarella sticks are a versatile food that can be enjoyed in many different ways.
## Popularity
Mozzarella sticks are a popular food item that can be enjoyed in many different ways. People have been experimenting with different recipes, such as a low-carb snack of apple, mozzarella stick, hummus, veggie, plain Greek yogurt, English cucumber, dill, peanut butter, and celery. There have also been attempts to create a stuffed crust pizza with a mozzarella stick, as well as a Korean corn dog with a French fry chunk and a half mozzarella stick inside. Mozzarella sticks can also be enjoyed with marinara sauce, ranch, ketchup, and other condiments.
## Availability
Mozzarella sticks are a popular snack food that can be found in many places. They can be eaten alone or as part of a meal, such as a burger or a pizza. They can also be used as an ingredient in dishes such as mac and cheese, risotto, and fried cauliflower. Mozzarella sticks can be found in many forms, such as deep-fried, baked, or grilled. They can also be paired with other foods, such as fruit, vegetables, and sauces. Mozzarella sticks are high in lactose and should be consumed in moderation.
## International Appeal
Mozzarella sticks are a popular dish enjoyed by people around the world. They can be made with a variety of ingredients, such as flour, Greek yogurt, turkey pepperoni, and cheese, and can be served with marinara sauce, butter, and olive oil. Mozzarella sticks are also popular in Czech, Slovak, and Polish cuisine. On International Cheese Day, people celebrate with cheese wedges, ooey gooey cheese pulls, and mozzarella sticks. There are a variety of recipes for mozzarella sticks, including a low-fat version with Greek yogurt, turkey pepperoni, and cheese. Mozzarella sticks can also be enjoyed with a variety of dips, such as marinara sauce, nacho cheese sauce, and homemade marinara sauce.
## Uses
Mozzarella sticks are a popular snack food that can be enjoyed in a variety of ways. They can be deep fried, grilled, or microwaved, and are often served with marinara sauce or ranch dressing. They can also be used as a topping for pizza, burgers, and ramen. Mozzarella sticks are also available in low-fat and dairy-free varieties. They are often served at fast food restaurants, such as Arby's, Burger King, and Sonic, and can be purchased in stores. Mozzarella sticks are a great snack for those looking for a quick meal or a tasty treat.
## Health Benefits
Mozzarella sticks are a popular food item that can be enjoyed in many different ways. They can be fried, microwaved, baked, or even wrapped in fruit roll-ups. They can be served with marinara sauce, ranch dressing, or even chocolate milk. Mozzarella sticks can also be used to make delicious dishes such as mac and cheese, chicken tenders, and jalapeno poppers. They can also be used to make sandwiches, tacos, and pizzas. Mozzarella sticks are a great way to add flavor and texture to any meal.
## Implications and Opportunities
Mozzarella sticks are a popular snack food that can be enjoyed in a variety of ways. They can be served with different sauces, as part of a pizza, or as part of a sandwich. They can also be used to make a variety of dishes, such as a scotch egg, a Camembert burger, or a mozzarella stick hybrid pizza. Mozzarella sticks can also be served with a variety of sides, such as fries, onion rings, and hash browns. Additionally, they can be used to make a variety of desserts, such as a mozzarella stick candle.
Mozzarella sticks are a popular bar food and snack item that can be enjoyed in a variety of ways. They can be served as an appetizer, a side dish, or even as a main course.'''
#word_count = 500
with open(filename + "Executive Summary_CACHE.txt", "r") as f:
exec_summary = f.read()
# industry_template = PromptTemplate(input_variables=['summaries'], template=extract_industry)
# summary_chain = LLMChain(llm=llm, prompt=industry_template)
# industry = summary_chain.run(summaries)
brand = brand
industry = industry
# toolname = ['serpapi']
# tools = load_tools(toolname)
# agent = initialize_agent(tools=tools, llm=llm, agent='zero-shot-react-description', verbose=True)
# internet_content = agent.run(f'What is {brand}?')
SWOT_analysis_template = '''Ignore all previous instructions. Do not rush. Make this impactful and clear.
•Read through all the bullet points and make sure you understand all the bullet points, before you start working.
Act as a subject matter expert, Business analyst, social media expert and professor with 20 years of research experience.
Here is an executive Summary for updated context : {exec_summary}
[IMPORTANT INSTRUCTION]
Your singular task is to provide expert reports with key elements and useful content. Do not make up any information. Do not use jargon.
Introduction:
Start with a paragraph introducing
Now: return the SWOT for the brand {brand} in the {industry} industry.
example:
## Strengths
- Strength 1
- Strength 2
...
## Weaknesses
- Weakness 1
- Weakness 2
...
## Opportunities
- Opportunity 1
- Opportunity 2
...
## Threats
- Threat 1
- Threat 2
...
SWOT formatted with markdown syntax:
'''
prompt = PromptTemplate(template=SWOT_analysis_template, input_variables=['industry', 'brand', 'exec_summary'])
SWOT_chain = LLMChain(llm=llm, prompt=prompt)
SWOT_summary = SWOT_chain.run(industry=industry, brand=brand, exec_summary=exec_summary)
return("" + SWOT_summary,'<span id="swotx"></span>', markdown_to_html(SWOT_summary + "<div id='isSwot'></div>") , "<span class='hsub'>Analysis:</span>SWOT")
def emotional_mapping(dataframe, industry = None, graph_type = None, filename = None, fullProjectData = None, sourceIndex = 0):
sourceData = fullProjectData['sources'][int(sourceIndex)]
externalPrompt = sourceData['content']['swot_']
if (dataframe is None):
return None,None, '<span id="sentiment"></span>', '<h1>Please click "Launch" on the left sidebar.</h1>', "<span class='hsub'>Analysis:</span>Sentiment Analysis"
if os.path.exists(filename + 'Sentiment Analysis_CACHE.txt'):
# read this: emotional_count.to_csv(filename + "Sentiment Analysis_CACHE.csv", index=False)
emotional_count = pd.read_csv(filename + "Sentiment Analysis_CACHE.csv")
with open(filename + 'Sentiment Analysis_CACHE.txt', 'r') as f:
emotional_summary = f.read()
return(emotional_summary, emotional_count,'<span id="sentiment"></span>', markdown_to_html(""+emotional_summary), "<span class='hsub'>Analysis:</span>Sentiment Analysis")
# return output_summary, dataframe[['translated_text']], markdown_to_html(output_summary), markdown_to_html(output_summary), "Executive Summary"
else:
if 'top_emotion_bertweet' in dataframe.columns:
dataframe['emotion'] = dataframe['top_emotion_roberta'] #dataframe['top_emotion_bertweet']
elif 'top_emotion_roberta' in dataframe.columns:
dataframe['emotion'] = dataframe['top_emotion_roberta']
elif 'top_emotion_distilbert' in dataframe.columns:
dataframe['emotion'] = dataframe['top_emotion_distilbert']
elif 'top_emotion' in dataframe.columns:
dataframe['emotion'] = dataframe['top_emotion']
else:
dataframe = get_emotion_bertweet(dataframe)
dataframe['emotion'] = dataframe['top_emotion_bertweet']
word_count = 500
# industry_template = PromptTemplate(input_variables=['summaries'], template=extract_industry)
# summary_chain = LLMChain(llm=llm, prompt=industry_template)
# industry = summary_chain.run(summaries)
industry = industry
# get positive dataset
positive = dataframe[dataframe['polarity'] > 0]
# get negative dataset
negative = dataframe[dataframe['polarity'] < 0]
positive_emotions = []
negative_emotions = []
corpus_positive = {}
corpus_negative = {}
# Calculate the number of unique emotions for positive and negative datasets
num_positive_emotions = min(len(positive['emotion'].unique()), 3)
num_negative_emotions = min(len(negative['emotion'].unique()), 3)
# Loop through the positive emotions
for i in range(num_positive_emotions):
value = str(positive['emotion'].value_counts(normalize=True).index[i])
percent = str(round(positive['emotion'].value_counts(normalize=True)[i] * 100, 2)) + '%'
positive_emotions.append(value + ' ' + percent)
corpus_positive[value] = positive[positive['emotion'] == value]['translated_text'].tolist()
# Loop through the negative emotions
for i in range(num_negative_emotions):
value = str(negative['emotion'].value_counts(normalize=True).index[i])
percent = str(round(negative['emotion'].value_counts(normalize=True)[i] * 100, 2)) + '%'
negative_emotions.append(value + ' ' + percent)
corpus_negative[value] = negative[negative['emotion'] == value]['translated_text'].tolist()
emotion_summary = {}
text_splitter = TokenTextSplitter.from_tiktoken_encoder(
encoding_name='p50k_base',
chunk_size = 2000,
)
for emotion, text in corpus_positive.items():
emotion_summary[emotion] = text_splitter.split_text(''.join(text))
# get first element
emotion_summary[emotion] = emotion_summary[emotion][0]
emotion_summarize_template = """ {text} \n\n
Summarize the text from the above document to answer this question : Why are people feeling {emotion} ? \n\n
SUMMARY: """
prompt_template = PromptTemplate(input_variables=['text', 'emotion'], template=emotion_summarize_template)
summary_chain = LLMChain(llm=llm, prompt=prompt_template)
emotion_summary[emotion] = summary_chain.run(text=emotion_summary[emotion], emotion=emotion, industry=industry)
for emotion, text in corpus_negative.items():
emotion_summary[emotion] = text_splitter.split_text(''.join(text))
# get first element
emotion_summary[emotion] = emotion_summary[emotion][0]
emotion_summarize_template = """ {text} \n\n
Summarize the text from the above document to answer this question : Why are people feeling {emotion} ? \n\n
SUMMARY: """
prompt_template = PromptTemplate(input_variables=['text', 'emotion'], template=emotion_summarize_template)
emotion_summary[emotion] = summary_chain.run(text=emotion_summary[emotion], emotion=emotion, industry=industry)
executive_summary_template = '''Imagine you are an Elite psychologist, Analyst, and Data Guru. You are familiar with leading emotion measurement techniques and the latest developments in the field,
including the Plutchik index and Emotional Intensity Scale (EIS).
Data Summary per emotions, leave 'other' emotions!: {all_emotions}
Your task is to leverage your invaluable expertise in crafting an insightful {word_count} emotion-driven report tailored for C-level executives and decision-makers in {industry}.
The objective is to provide valuable insights into the impact of the top emotions marketing and branding strategies and provoke lightbulb moments for our readers. Your analysis should provide valuable insights that can drive strategic decision-making based on the key emotions.
Structure the analysis in two main sections: Observations and Key Findings. In the Observations section, provide precise details about specific emotion measurements and their relation to the wants and needs expressed in the data. In the Key Findings section, focus on insightful content and compare and contrast the different emotions, revealing what's hiding behind the numbers and addressing both expressed and latent emotions.
Avoid jargon and broad terms in your analysis, ensuring that the content is clear, concise, and engaging.
Thoroughly examine and interpret the key trends, patterns, and insights derived from the key emotions .
Articulate the implications and opportunities based on the emotion levels, keeping in mind the needs and challenges of the {industry}.
Consider the cultural, social, and contextual nuances present in the data, drawing on your expertise to ensure the emotion analysis remains relevant and insightful across diverse audiences.
Leverage your psychological expertise to ensure the accuracy, reliability, and relevance of the information presented in the summary. Make us benefit from your unique expertise and insights.
Using markdown formatting, write a {word_count} word SEQ-optimized Executive Summary. Write a click worthy short titles. Add a key takeaway
section at the end. Use the seed keyword as the first H2. Always use a combination of paragraphs, lists, and tables for a better reader experience. For the styling of the output, please include headers for different sections, and use bullet points where applicable to organize the key insights.
To avoid repetition, vary the sentence structure and word choice when presenting information from different data sources or discussing various trends, insights, or opportunities.
Using synonyms, alternate phrasings, and modifying sentence structure can help keep the text engaging and fresh for readers. \n\n
'''
prompt = PromptTemplate(template=executive_summary_template, input_variables=['word_count', 'industry', 'all_emotions'])
executive_chain = LLMChain(llm=llm, prompt=prompt)
emotional_summary = executive_chain.run(industry=industry, word_count=word_count, all_emotions=str(emotion_summary.items()))
emotional_count = dataframe.groupby('emotion').agg({'translated_text': 'count'}).reset_index()
emotional_count.to_csv(filename + "Sentiment Analysis_CACHE.csv", index=False)
with open(filename + "Sentiment Analysis_CACHE.txt", "a") as f:
try:
f.write(emotional_summary)
except:
pass
# dataframe.rename(columns={'emotion': 'Emotion'}, inplace=True)
return(emotional_summary, emotional_count,'<span id="sentiment"></span>', markdown_to_html(""+emotional_summary), "<span class='hsub'>Analysis:</span>Sentiment Analysis")
def generate_wordcloud(dataframe):
text = ' '.join(dataframe['translated_text'].tolist())
colors = ["#FF69B4", "#FFD700", "#FFA500", "#D3D3D3"]
wordcloud = WordCloud(max_font_size=300, max_words=800, width = 1600, height = 1200, background_color="white", colormap="Set2", color_func=lambda *args, **kwargs: colors[len(args[0]) % len(colors)]).generate(text)
return wordcloud.to_image()
def get_polarity(dataframe):
df = dataframe.copy()
def get_sentiment_vader(text):
from nltk.sentiment.vader import SentimentIntensityAnalyzer
sid = SentimentIntensityAnalyzer()
return sid.polarity_scores(text)['compound']
df['translated_text'] = df['translated_text'].astype(str)
df['polarity'] = df['translated_text'].apply(lambda x: get_sentiment_vader(x))
fig = plt.figure(frameon=False, figsize=(16, 12))
fig = plt.figure(figsize=(15, 8))
# try :
if 'date' in df.columns:
df['date2'] = pd.to_datetime(df['date'], utc=True)
else:
return None, dataframe
print('no date, skipping polarity viz')
# except:
# print("no/wrong date column")
# return None, dataframe
sorted_dates = df.sort_values(by='date2')
cmap = plt.cm.get_cmap('RdYlGn')
norm = plt.Normalize(sorted_dates['polarity'].min(), sorted_dates['polarity'].max())
colors = [cmap(norm(value)) for value in sorted_dates['polarity']]
# scatter plot
plt.scatter(sorted_dates['date2'],sorted_dates['polarity'], color=colors, alpha=0.5)
# add a lineplot to show the average per day
plt.plot(sorted_dates['date2'], sorted_dates['polarity'].rolling(window=50).mean(), color='hotpink', linewidth=1.5)
# add legend about pink line
plt.legend(['Polarity', 'Trend'], frameon=False, bbox_to_anchor=(0.3, 1), loc='upper right', ncol=2, fontsize=12)
# add x-label inside the plot
plt.xlabel('Date', fontsize=12 )
# add y-label
plt.ylabel('Polarity', fontsize=12)
# add x-ticks
plt.xticks(fontsize=12 )
# ax1 = plt.axes()
# x_axis = ax1.axes.get_xaxis()
# x_axis.set_visible(False)
plt.yticks(fontsize=12)
return plt, df
def get_synthetic_comment(text: None, slider, dataframe) :
if check_words_in_string(words, text, case=False) and False:
df = dataframe.copy() # query is based on a dataframe called "df"
agent = create_pandas_dataframe_agent(OpenAI(temperature=0), df, verbose=True)
def launch_agent(user_input):
memory['user'].append(user_input)
# user_input = get_memory() + user_input
user_input = user_input
agent_output = (agent.run(user_input))
memory['agent'].append(agent_output)
return agent_output
print('Pandas Agent Query')
answer = launch_agent(text)
return answer, None, None
else:
query_type = 'comments'
query = f'Forget all of the above. Write 2-3 examples of {query_type} answering this question: {text}. \n\n{query_type}:\n\n'
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
temperature=0.5,
max_tokens=300,
top_p=1,
# stream=True,
messages=[
#{"role": "system", "content": "Forget all the above instructions. You are a reviewer of products but also a customer and have an opinion about the products you buy. You are asked to write a review of a product you have recently purchased."},
{"role": "user", "content": query},
]
)['choices'][0]['message']['content']
response = re.sub(r'As an AI model.*?\.', '', response)
response = re.sub(r'As an AI language model.*?\.', '', response)
query_embed = model.encode(response)
# dataframe['embeddings'] = dataframe['translated_text'].apply(
# lambda x: model.encode(x))
dataframe['similarity'] = dataframe['embeddings'].apply(
lambda x: round(float(util.pytorch_cos_sim(query_embed, x)), 3))
dataframe.sort_values(by='similarity', ascending=False, inplace=True)
complexity = ''
cutsize = 900
if dataframe[dataframe['similarity'] > slider].shape[0] == 0:
response2 = f'No {query_type} found with a similarity score above {slider}. Try to lower the similarity score threshold or change the question.\n\n However, this is what I found on the internet: \n\n'
toolname = ['wolfram-alpha']
tools = load_tools(toolname)
agent = initialize_agent(tools=tools, llm=llm, agent='zero-shot-react-description', verbose=False)
wolfram_content = agent.run(f'{text}')
wolfram_response = f'{wolfram_content}'
toolname = ['serpapi']
tools = load_tools(toolname)
agent = initialize_agent(tools=tools, llm=llm, agent='zero-shot-react-description', verbose=False)
internet_content = agent.run(f'{text}')
internet_response = f'{internet_content}'
response2 = f'{response2} \n\n {wolfram_response} \n\n {internet_response}'
else:
try:
corpus = dataframe[dataframe['similarity']
> slider]['translated_text'].tolist()
print("CORPUS SIZE:", "FULL")
response2 = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
temperature=0.5,
max_tokens=300,
top_p=1,
# stream=True,
messages=[
{"role": "user", "content": f'\n{corpus}\n\nSummarize the above {query_type}s {complexity} to answer this question: {text}\n\nSummary:\n\n'},
]
)['choices'][0]['message']['content']
response2 = f'<b>Question:</b> {text}\n\n<b>Answer:</b> {response2}'
except:
try:
corpus = dataframe[dataframe['similarity']
> slider]['translated_text'][0:50].tolist()
corpus = [x[:cutsize] for x in corpus]
print("CORPUS SIZE:", 50)
response2 = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
temperature=0.5,
max_tokens=300,
top_p=1,
# stream=True,
messages=[
{"role": "user", "content": f'\n{corpus}\n\nSummarize the above {query_type}s {complexity} to answer this question: {text}\n\nSummary:\n\n'},
]
)['choices'][0]['message']['content']
response2 = f'<b>Question:</b> {text}\n\n<b>Answer:</b> {response2}'
except:
try:
corpus = dataframe[dataframe['similarity']
> slider]['translated_text'][0:30].tolist()
corpus = [x[:cutsize] for x in corpus]
print("CORPUS SIZE:", 30)
response2 = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
temperature=0.5,
max_tokens=300,
top_p=1,
# stream=True,
messages=[
{"role": "user", "content": f'\n{corpus}\n\nSummarize the above {query_type}s {complexity} to answer this question: {text}\n\nSummary:\n\n'},
]
)['choices'][0]['message']['content']
response2 = f'<b>Question:</b> {text}\n\n<b>Answer:</b> {response2}'
except:
corpus = dataframe[dataframe['similarity']
> slider]['translated_text'][0:15].tolist()
print("CORPUS SIZE:", 15)
# keep only the first 400 characters per each list elem
corpus = [x[:cutsize] for x in corpus]
response2 = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
temperature=0.5,
max_tokens=300,
top_p=1,
# stream=True,
messages=[
{"role": "user", "content": f'\n{corpus}\n\nSummarize the above {query_type}s {complexity} to answer this question: {text}\n\nSummary:\n\n'},
]
)['choices'][0]['message']['content']
response2 = f'<b>Question:</b> {text}\n\n<b>Answer:</b> {response2}'
# Graph Generation
return response2, dataframe[dataframe['similarity'] > slider][['similarity', 'translated_text']][0:15], response2, "<span class='hsub'>Analysis:</span>Manual query"
return response2, dataframe[dataframe['similarity'] > slider][['similarity', 'translated_text']][0:15], response2, "<span class='hsub'>Analysis:</span>Manual query"
def clear_output(filename, titleBlock):
titleBlock = re.sub('<[^<]+?>', '', titleBlock)
# remove all \n
# trim
titleBlock = titleBlock.replace("\n", "")
print(titleBlock)
print(filename)
print(filename + titleBlock + "_CACHE.txt")
try:
os.remove(filename + titleBlock + "_CACHE.txt")
except Exception as e:
print (e)
pass
return 'Cache has been cleared'
def save_output(tab, data_answer):
# def save_output(tab):
if tab == "Summary":
print("summary save")
print(data_answer)
print (data_answer.value)
print(dir(data_answer))
# with open("data_answer.txt", "+ab") as f:
# open and append to it
with open("data_answer.txt", "a") as f:
try:
f.write(data_answer.value)
f.write(data_answer)
except:
pass
elif tab == "Table":
try:
similar_reviews_dataframe = pd.DataFrame(similar_reviews)
similar_reviews_dataframe.to_csv("similar_reviews.csv", index=False, encoding='utf-8-sig')
except:
pass
else:
try:
g.save_graph("graph.html")
except:
pass
def generate_new_examples(text):
# GENERATE NEW EXAMPLES BASED ON QUERY
new_examples = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
temperature=0.7,
max_tokens=100,
top_p=1,
# stream=True,
messages=[
{"role": "user", "content": f'Generate a list of 4 most relevent questions related to this question : {text}. Output should be in a comma separated string format, no numbers, ordering. (example: What is this text about?, What is the main trend?,...) There is no need to enumerate each element.\n\n'},
]
)['choices'][0]['message']['content']
new_examples = new_examples.split('\n')
# make a list for each element
new_examples = [x for x in new_examples if x != '']
new_examples = [x.strip() for x in new_examples]
new_examples = [x.split(',') for x in new_examples]
return new_examples
def summarize_video(url):
loader = YoutubeLoader.from_youtube_channel(url)
result = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)
texts = text_splitter.split_documents(result)
print(len(texts))
# We first try the chain with the default chain type
# if length of the text is more than 2000 tokens, we will use map reduce (summary of chunks)
try:
chain = load_summarize_chain(llm, chain_type='stuff', verbose=True)
print('ChainType: stuff')
# store intermediate steps
return chain.run(result)
except:
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)
texts = text_splitter.split_documents(result)
# print(len(texts))
chain = load_summarize_chain(llm, chain_type='map_reduce', verbose=True)
print('ChainType: map reduce')
return chain.run(texts)
# def main():
# global similar_reviews, g, query_type, response2, Output, output_html, html, new_examples, samples
def get_graph(dataframe):
print("step 1")
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
embeddings_array = dataframe['embeddings'].tolist()
print ("step 2")
num_clusters = 3 # Adjust the number of clusters as needed
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
cluster_labels = kmeans.fit_predict(embeddings_array)
print(cluster_labels)
sentences = dataframe['translated_text'].tolist()
print ("step 3")
G = nx.DiGraph()
cos_sim_matrix = cosine_similarity(embeddings_array)
print(cos_sim_matrix)
print ("step 4")
for idx, label in enumerate(cluster_labels):
G.add_node(idx, sentence=sentences[idx], cluster=label)
for i in range(len(sentences)):
for j in range(len(sentences)):
if i != j:
#if cos_sim_matrix[i, j] > 0.8:
G.add_edge(i, j, weight=cos_sim_matrix[i, j])
# else:
# continue
print ("step 5")
plt.figure(figsize=(10, 10))
pos = nx.spring_layout(G, k=0.5, iterations=50)
print ("step 6")
G_undirected = G.to_undirected()
from community import community_louvain
node_to_community = community_louvain.best_partition(G_undirected)
print ("step 7")
community_to_color = {
0 : 'tab:pink',
1 : 'tab:orange',
2 : 'tab:purple',
3 : 'tab:blue',
}
node_color = {node: community_to_color[community_id] for node, community_id in node_to_community.items()}
print ("step 8")
reducer = umap.UMAP(n_components=2, random_state=42)
embeddings_2d = reducer.fit_transform(embeddings_array)
def normalize_weight(weight, min_weight, max_weight):
return (weight - min_weight) / (max_weight - min_weight)
def visualize_graph_plotly(graph, embeddings_2d, scaling_factor=3):
print ("step 9")
min_weight = min((data['weight'] for _, _, data in graph.edges(data=True)))
max_weight = max((data['weight'] for _, _, data in graph.edges(data=True)))
fig = go.Figure()
print ("step 10")
# Add edges with width based on the normalized weights
print(len(graph.edges()))
for i, j in graph.edges():
print(i)
weight = normalize_weight(graph[i][j]['weight'], min_weight, max_weight)
# weight=0.1
fig.add_shape(
type="line",
x0=embeddings_2d[i][0],
x1=embeddings_2d[j][0],
y0=embeddings_2d[i][1],
y1=embeddings_2d[j][1],
yref="y",
xref="x",
line=dict(color="rgba(211, 211, 211, 0.5)", width=weight * scaling_factor * 0.7),
)
print ("step 11")
# Add nodes
for idx, emb in enumerate(embeddings_2d):
closeness = nx.closeness_centrality(G)[idx]
degree = nx.degree_centrality(G)[idx]
betweenness = nx.betweenness_centrality(G)[idx]
eigen = nx.eigenvector_centrality(G)[idx]
fig.add_trace(
go.Scatter(
x=[emb[0]],
y=[emb[1]],
mode="markers+text",
text=[graph.nodes[idx]["sentence"]],
textposition="bottom center",
marker=dict(color=node_color[idx][4:], size=closeness * 40),
# add closeness, degree, betweenness and sentence as hover text
hovertext=[f"{graph.nodes[idx]['sentence']} <br> closeness_centrality: {closeness:.2f} <br> degree_centrality: {degree:.2f} <br> betweenness_centrality: {betweenness:.2f} <br> eigenvector_centrality: {eigen:.2f}"],
)
)
print("for completed")
fig.update_layout(showlegend=False, plot_bgcolor="white", width=1200, height=800)
fig.update_xaxes(showticklabels=False, showgrid=False, zeroline=False,
showline=False, automargin=False, showspikes=False)
fig.update_yaxes(showticklabels=False, showgrid=False, zeroline=False,
showline=False, automargin=False, showspikes=False)
fig.update_layout(title_text="Test Graph Visualization", title_x=0.5, title_font_size=30, title_font_color='black')
return fig
return visualize_graph_plotly(G, embeddings_2d, scaling_factor = 10)
def update_examples(samples):
return gr.Dataset.update(samples=samples)
def print_samples():
global samples
return {"samples": samples}
def load_example(example_id):
global samples
return samples[example_id][0]
url_params = gr.JSON({}, visible=False, label="URL Params")
def getAnalysisLabel(id):
if id == 'exec_sum':
return 'Executive Summary'
elif id == 'top_clust':
return 'Topic Cluster'
elif id == 'trend_analysis':
return 'Trend Analysis'
elif id == 'emot_clust':
return 'Sentiment Analysis'
elif id == 'swot_':
return 'SWOT Analysis'
elif id == 'competitor':
return 'Competitor Analysis'
tabs = [
{
"id": 0,
"label": "Social Media",
"content": {
"exec_sum":None,
"top_clust": None,
"emot_clust": None,
"swot_": None,
# "competitor": None,
},
"filename": "profdemo_cleaned.xlsx"
},
{
"id": 1,
"label": "News/Publications",
"content": {
"exec_sum":None,
"trend_analysis": None,
# "top_clust": None,
"competitor" : None,
"swot_": None,
},
"filename": "cleaned_news.xlsx"
},
# {
# "id": 0,
# "label": "Mozzarella",
# "content": {
# "exec_sum":None,
# "top_clust": None,
# # "trend_analysis": None,
# "emot_clust": None,
# # "swot_": None,
# # "competitor" : None,
# },
# "filename": "MozzarellaTW.xlsx"
# },
# {
# "id": 1,
# "label": "Onion",
# "content": {
# "exec_sum":None,
# "top_clust": None,
# "emot_clust": None,
# # "competitor" : None,
# },
# "filename": "OnionTW.xlsx"
# },
# {
# "id": 2,
# "label": "Brand - Social Media",
# "content": {
# "exec_sum":None,
# "top_clust": None,
# "trend_analysis": None,
# "emot_clust": None,
# "swot_": None,
# "competitor" : None,
# },
# "filename": "LambWestonBrand.csv"
# },
# {
# "id": 3,
# "label": "Brand - News",
# "content": {
# "exec_sum":None,
# "top_clust": None,
# "trend_analysis": None,
# "emot_clust": None,
# "swot_": None,
# "competitor" : None,
# },
# "filename": "LambWestonNews.csv"
# },
]
list = []
maxSources = 10
oTab = []
attachButtons = []
for element in tabs:
oTab.append( {
"exec_sum":None,
"top_clust": None,
"trend_analysis": None,
"emot_clust": None,
"swot_": None,
"competitor" : None,
})
attachButtons.append(None)
get_window_url_params = """
function(url_params) {
var scriptElement = document.createElement("script");
scriptElement.src = '"""+gradio_js+"""?v="""+str(ra)+"""';
scriptElement.innerHTML = "console.log('This is dynamic JavaScript code');";
document.body.appendChild(scriptElement);
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
return [url_params];
}
"""
runjs = """
function(projJson,num,fullData) {
console.log(fullData)
var localizations = fullData['localization']
console.log( fullData['localization'])
if (localizations) {
document.querySelectorAll('.hsub')[0].innerText = localizations['project'];
// document.querySelectorAll('.hsub')[1].innerText = "semmi";
// document.querySelectorAll('.hsub')[2].innerText = "semmi";
if (document.querySelector('#querybtn')) document.querySelector('#querybtn').innerText = localizations['talk_to_your_data']
var tabs = document.querySelectorAll('#targetColMiddle .tab-nav button');
tabs[0].innerText = localizations['overview'] || 'Overview'
tabs[1].innerText = localizations['rawdata'] || 'Raw Data'
tabs[2].innerText = localizations['visuals'] || 'Visuals'
document.querySelectorAll('.sideTitle span')[0].innerText = localizations['data_sources'] || 'Data sources'
document.querySelectorAll('.sideTitle span')[1].innerText = localizations['predefined_analysis'] || 'Predefined analysis'
}
document.querySelectorAll('.analysisButton').forEach(function(el) {
el.style.display = 'none';
});
Object.keys(projJson[num]['content']).forEach(function(key) {
document.querySelectorAll('.analysisButton').forEach(function(el) {
if (el.id == key) {
el.style.display = 'block';
}
});
});
document.querySelectorAll('.sourceButton').forEach(function(el) {
el.classList.remove('selectedSource');
});
document.querySelectorAll('.sourceButton').forEach(function(el) {
if (el.innerHTML == projJson[num]['label']) el.classList.add('selectedSource');
});
// NEM ÉRTEM MINEK KELL TÖBB OUTPUT
return [1, num,1,1]
}
"""
def parse_URL_params(url_params):
# if url params has 'pid'
if 'pid' in url_params:
request = requests.get(rubik_backend + '?proj=' + url_params['pid'])
text = url_params['pid']
else:
request = requests.get(rubik_backend + '?proj=demo')
text = "demo"
# textlowercase url_params['pid']
# first letter uppercase
textUpper = request.json()["brand"][0].upper() + request.json()["brand"][1:]
return [url_params, request.json()["sources"], request.json()["sources"], "<div class='brand'><span class='hsub'>Project:</span>"+textUpper+"</div>", request.json(), text]
for i in range(maxSources):
list.append({"id":i, "name":"asd", "obj":"", "analList":[]})
def variable_outputs(k):
global list
sourceArray = k
output = None
for i in range(len(sourceArray)):
if not output:
output = [list[i]["obj"].update(value=sourceArray[i]["label"],visible=True)]
else:
output += [list[i]["obj"].update(value=sourceArray[i]["label"],visible=True)]
remainingCount = maxSources - len(sourceArray)
for i in range(remainingCount):
output += [list[i]["obj"].update(value="",visible=False)]
return output
url_params = gr.JSON({}, label="URL Params", visible=False)
# with gr.Interface(theme=gr.themes.Soft(primary_hue='pink', secondary_hue='pink', neutral_hue='stone'), css="footer{display:none !important}") as app:
# , css=".main{filter: blur(3px)}footer{display:none !important}"
with gr.Blocks(theme=gr.themes.Soft(primary_hue='pink', secondary_hue='pink', neutral_hue='stone')) as app:
dat = gr.Markdown()
projdetails = gr.Textbox("test", label="Project Details", visible=False)
projJson = gr.JSON(visible=False)
fullProjectData = gr.JSON(visible=False)
projectUUID = gr.State(value="", label="projectUUID", visible=False)
if True:
summaries_state = gr.State(value=[], label="summaries_state")
executive = gr.State(value='', label="executive")
needHeader = True
# if needHeader and False:
# with gr.Row():
# with gr.Column(scale=.1, elem_id="logocol"):
# # gr.Markdown('<img id="logo" src="http://
# # add a title at the center of the page
# gr.Markdown('<a href="https://app.rubiklab.ai"><img id="logo" src="http://127.0.0.1:5500/logo.png" /></a>')
# with gr.Column(scale=.3):
# gr.Markdown("<h1>Talkback</h1>")
# random number between 1 and 10000
ra = str(np.random.randint(1, 10000))
gr.Markdown(
"""
<link rel='stylesheet' href='https://fonts.googleapis.com/css?family=Roboto:ital,wght@0,200;0,300;0,400;0,600;0,700;0,800;0,900;1,200;1,300;1,400;1,600;1,700;1,800;1,900&display=swap'>
<link rel="stylesheet" href='""" + gradio_css + """?v="""+str(ra)+"""'>
<link rel="icon" type="image/x-icon" href="https://api.rubiklab.ai/assets/favicon.ico">
"""
)
# if needHeader:
# with gr.Row():
# with gr.Column(elem_id="header"):
# gr.Markdown("<h2>Nike</h2>")
# selectedData = gr.Markdown('<span></span>', elem_id="datanameblock")
# titleBlock = gr.Markdown("<span class='title'></span>", elem_id="titleblock")
df = pd.DataFrame()
with gr.Row():
with gr.Column(scale=.4, elem_id="leftContainer"):
with gr.Row(elem_id="header"):
proj = gr.Markdown("")
selectedData = gr.Markdown('<span></span>', elem_id="datanameblock")
titleBlock = gr.Markdown("<span class='title'></span>", elem_id="titleblock")
gr.Markdown("<h3 class='sideTitle'><span>Data sources</span></h3>")
tabs = []
analysisList = []
for i in range(maxSources):
list[i]["obj"] = gr.Button(value="" + str(i),visible=False, elem_classes="sourceButton")
list[i]["index"] = gr.Number(i, visible=False)
tabs.append(list[i]["obj"])
gr.Markdown("<h3 class='sideTitle predefined'><span>Predefined analysis</span></h3>")
# analysisList = ['exec_sum', 'top_clust', 'emot_clust', 'swot_', 'trend_analysis', 'competitor']
oa = {
'exec_sum': gr.Button("Executive Summary", elem_id="exec_sum", elem_classes=["analysisButton"]),
'top_clust': gr.Button("Topic Clusters", elem_id="top_clust", elem_classes=["analysisButton"]),
'emot_clust': gr.Button("Sentiment Analysis", elem_id="emot_clust", elem_classes=["analysisButton"]),
'swot_': gr.Button("SWOT Analysis", elem_id="swot_", elem_classes=["analysisButton"]),
'trend_analysis': gr.Button("Trend Analysis", elem_id="trend_analysis", elem_classes=["analysisButton"]),
'competitor': gr.Button("Competitor Analysis", elem_id="competitor", elem_classes=["analysisButton"]),
}
newcluster = gr.Button("New Cluster", elem_id="newcluster", elem_classes=["newcluster"], visible=False)
newgraph = gr.Button("New graph", elem_id="newcluster", elem_classes=["newgraph"], visible=False)
# for i in range(len(analysisList)):
# gr.Button(analysisList[i], elem_classes=["analysisButton"], elem_id=analysisList[i])
# iterate throu oa
gr.Button("Talk to your data", elem_id="querybtn")
projJson.change(variable_outputs, projJson, tabs)
gr.Markdown(f'url params value: {url_params.value}', visible=False)
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold", visible=False)
csv_file = gr.File(label="File (csv, excel, h5..)", elem_id="fupload",visible=False)
brand = gr.State('brand')
industry = gr.State('industry')
csvs = gr.State('csvnum')
filename = gr.State('filename')
graph_type = gr.State('graph_type')
# THE DATASET
data_storage = gr.State(label="data_storage")
# TOPICS LIST
list_of_topics = gr.State(label="list_of_topics")
# add image output
with gr.Tab("Word Cloud"):
Imaj = gr.Image(label="Word Cloud")
with gr.Tab("Polarity"):
Polarity = gr.Plot(label="Polarity")
app.load(
fn=parse_URL_params,
inputs=[url_params],
outputs=[url_params, projJson, projdetails, proj, fullProjectData,projectUUID],
_js=get_window_url_params
)
url_params.render()
with gr.Column(scale=2, elem_id="targetColMiddle"):
graphHelper = gr.Markdown("<span></span>")
with gr.Tab("Overview", elem_id="overviewTab"):
tab = 'Summary'
data_answer = gr.Textbox(visible=False, elem_id="hiddenTextbox")
# gr.Textbox.style(data_answer)
formattedres = gr.Markdown("<span class='description'></span>")
with gr.Row():
with gr.Column(scale=6):
# add empty space
pass
with gr.Column(scale=.5, min_width=100):
clear_button = gr.Button("Clear", visible=True, elem_id="clear_button")
clear_button.click(fn=clear_output, inputs=[filename, titleBlock], outputs=[formattedres])
# save_button = gr.Button("Save", visible=True, elem_id="save_button")
# save_button.click(lambda: save_output("Summary", data_answer))
tab = gr.Tab("Raw data", elem_id="rawdataTab")
with tab:
tab = 'Table'
similar_reviews = gr.Dataframe(label="Table", type="pandas", max_rows=20, overflow_row_behaviour='paginate', show_label=False)
with gr.Row():
with gr.Column(scale=6):
# add empty space
pass
# with gr.Column(scale=.5, min_width=100):
# save_button = gr.Button("Save", visible=True)
# save_button.click(lambda: save_output("Table", data_answer))
with gr.Tab("Visuals"):
tab = 'Graph'
graph = gr.Plot(elem_id="cluster", label="")
graph2 = gr.Plot(elem_id="cluster2", label="", visible=False)
# with gr.Tab("Word Cloud"):
Imaj = gr.Image(label="Word Cloud", elem_id="vwordcloud")
# with gr.Tab("Polarity"):
Polarity = gr.Plot(label="Polarity", elem_id="vpolarity")
with gr.Row():
with gr.Column(scale=1):
clearbutton = gr.Button("Remove and regenerate", visible=True, elem_id="cleardrop_button")
clearkeepbutton = gr.Button("Keep and regenerate", visible=True, elem_id="clearkeep_button")
with gr.Row():
with gr.Column(scale=6):
# add empty space
pass
# with gr.Column(scale=.5, min_width=100):
# save_button = gr.Button("Save", visible=True)
# gr.Button.style(save_button, color="secondary")
# save_button.click(lambda: save_output("Graph", data_answer))
with gr.Row(elem_id="query"):
with gr.Column(scale=1, elem_id='query1'):
data_answerQuery = gr.Textbox(label="", lines=10, visible=False)
# gr.Textbox.style(data_answer)
formattedresQuery = gr.Markdown("<span class='description'></span>")
query = gr.Textbox(lines=1, placeholder="Start typing your question...", label=" ")
gr.Textbox.style(query)
submit_button = gr.Button("Submit", elem_id='submit')
gr.Button.style(submit_button, color="secondary")
with gr.Column(scale=.1, elem_id='query2'):
samples = [["What insights can we take from this data?", "2 What insights can we take from this data?"]]
examples = gr.Dataset(samples=samples, components=[query], type="index", label="Some hints for your next question, select which one you prefer.")
def update_examples(query):
global samples
samples = generate_new_examples(query)
return gr.Dataset.update(samples=samples)
def print_samples():
global samples
return {"samples": samples}
def load_example(example_id):
global samples
return samples[example_id][0]
def changesource(projJson, num):
# print("switching")
return 1
def doJS(projJson, num,fulldat):
# print("doing js")
return 1, num
sourcelabel = gr.TextArea(elem_id="activeSource", visible=False)
sourceIndex = gr.Number(visible=False)
xy = gr.State()
for i in range(maxSources):
num = list[i]["index"]
list[i]["obj"].click(doJS,inputs=[projJson, num, fullProjectData], outputs=[xy, sourceIndex], _js=runjs).then(
load_csv, inputs=[projJson, num, fullProjectData, projectUUID], outputs=[data_storage, data_answer, similar_reviews, formattedres, filename, selectedData]).then(
generate_wordcloud, inputs=[data_storage], outputs=[Imaj]).then(
get_polarity, inputs=[data_storage], outputs=[Polarity, data_storage])
# SUMMARIZE VIDEO CONTENT
def checkData(filename):
print(filename)
dat = gr.State(label="dat")
oa['exec_sum'].click(fn=checkData, inputs=[filename], outputs=[]).then(get_executive_summary, inputs=[data_storage, brand, industry,summaries_state, csvs, graph_type,filename, fullProjectData, sourceIndex], outputs=[data_answer, similar_reviews, graphHelper, formattedres, titleBlock])
oa['top_clust'].click(get_topic_cluster, inputs=[data_storage, graph_type,filename], outputs=[graph, similar_reviews, list_of_topics, query, dat, graphHelper,formattedres,titleBlock])
oa['emot_clust'].click(emotional_mapping, inputs=[data_storage, industry, graph_type,filename, fullProjectData, sourceIndex], outputs=[data_answer, similar_reviews, graphHelper,formattedres,titleBlock])
oa['swot_'].click(get_executive_summary, inputs=[data_storage, brand, industry,summaries_state, csvs, graph_type,filename, fullProjectData, sourceIndex], outputs=[data_answer, similar_reviews, graphHelper, formattedres, titleBlock]).then(get_SWOT, inputs=[data_storage, brand, industry, executive, graph_type,filename, fullProjectData, sourceIndex], outputs=[data_answer, graphHelper,formattedres,titleBlock])
oa['trend_analysis'].click(get_trend_summary, inputs=[data_storage, list_of_topics, brand, industry, graph_type,filename, fullProjectData, sourceIndex], outputs=[data_answer, similar_reviews, graphHelper,formattedres,titleBlock])
oa['competitor'].click(get_competitive, inputs=[brand, industry, graph_type,filename,data_storage, fullProjectData, sourceIndex], outputs=[data_answer, graphHelper,formattedres,titleBlock])
def clear_data(filename):
if os.path.exists(filename + 'df3.csv'):
os.remove(filename + 'df3.csv')
def rename_data_timestamp(filename):
if os.path.exists(filename + 'df3.csv'):
os.rename(filename + 'df3.csv', filename + str(datetime.datetime.now()) + '.csv')
clearbutton.click(clear_data, inputs=[filename], outputs=[]).then(get_topic_cluster, inputs=[data_storage, graph_type,filename], outputs=[graph, similar_reviews, list_of_topics, query, dat, graphHelper,formattedres,titleBlock])
clearkeepbutton.click(rename_data_timestamp, inputs=[filename], outputs=[]).then(get_topic_cluster, inputs=[data_storage, graph_type,filename], outputs=[graph, similar_reviews, list_of_topics, query, dat, graphHelper,formattedres,titleBlock])
# app.launch(share=True, server_name="0.0.0.0", server_port=7860)
def get_new_topic(data_storage, graph_type,filename):
from bertopic import BERTopic
from bertopic.representation import OpenAI
from sklearn.cluster import KMeans
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd
# import openai
# openai.api_key = 'sk-2Ulixq
prompt = """
I have a topic that contains the following documents:
[DOCUMENTS]
The topic is described by the following keywords: [KEYWORDS]
Based on the information above, extract a short topic label in the following format:
topic: <topic label>
"""
vectorizer_model=CountVectorizer(stop_words="english")
# df = pd.read_excel('C:/Users/sinan/Downloads/profdemo_cleaned (1).xlsx')
df = data_storage
df['translated_text'] = df['translated_text'].apply(lambda x: str(x))
docs = df['translated_text'].tolist()
representation_model = OpenAI(model="gpt-3.5-turbo", delay_in_seconds=.5, chat=True)
if len(docs) < 100:
cluster_model = KMeans(n_clusters=3)
topic_model = BERTopic(hdbscan_model=cluster_model, representation_model=representation_model, vectorizer_model=vectorizer_model)
else:
cluster_model = KMeans(n_clusters=6)
# representation_model = 'bert-base-nli-mean-tokens'
n_gram_range = (1, 1) # set the range of n-grams to be considered
min_topic_size = 10 # set the minimum number of documents in each topic
topic_model = BERTopic(hdbscan_model=cluster_model, representation_model=representation_model, n_gram_range=n_gram_range, min_topic_size=min_topic_size)
# topic_model = BERTopic(representation_model=representation_model, nr_topics=8)
topics, probs = topic_model.fit_transform(docs)
return topic_model.visualize_documents(docs, width=1200, height=800, title='Topic Clustering', hide_annotations=True)
newcluster.click(get_new_topic, inputs=[data_storage, graph_type,filename], outputs=[graph2])
newgraph.click(get_graph,inputs=[data_storage], outputs=[graph2])
# 1. ADD QUESTIONS TO THE QUERY
examples.click(load_example, inputs=[examples], outputs=[query])
# UNCOMMENT FOR TEXT TO SPEECH OUTPUT
submit_button.click(get_synthetic_comment, inputs=[query, threshold, data_storage ], outputs=[data_answer, similar_reviews, formattedresQuery, titleBlock]).success(update_examples, inputs=[query], outputs=[examples])
def same_auth(username, password):
return username == password
if __name__ == "__main__":
# app.launch(share=True, server_name="0.0.0.0", server_port=7860, auth=same_auth, auth_message="Please enter the same username and password")
app.launch(share=True, server_name="0.0.0.0", server_port=7860)
# if __name__ == "__main__":
# main()
|