File size: 5,988 Bytes
9ddee9f
 
 
 
 
 
 
 
 
 
c92b736
 
9ddee9f
 
 
 
c92b736
9ddee9f
 
 
 
 
 
 
 
 
 
 
 
c92b736
 
9ddee9f
 
 
 
 
 
 
 
 
 
c92b736
 
ce6a6f8
9ddee9f
8cf4695
c92b736
 
 
 
 
9ddee9f
 
 
 
 
 
 
 
 
 
 
 
 
 
c92b736
 
9ddee9f
 
 
ce6a6f8
9ddee9f
8cf4695
 
 
 
 
 
 
 
c92b736
8cf4695
9ddee9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c92b736
 
8cf4695
9ddee9f
 
8cf4695
c92b736
 
 
9ddee9f
 
 
 
 
 
 
c92b736
 
 
 
 
9ddee9f
 
 
 
c92b736
 
 
 
 
9ddee9f
 
 
 
 
 
 
 
 
 
 
 
 
 
8cf4695
 
 
 
 
9ddee9f
 
 
c92b736
 
 
 
 
 
9ddee9f
 
 
 
 
 
 
c92b736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cf4695
 
 
 
 
9ddee9f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import gradio as gr

# from arguments import init_args
from gr_app.GradioApp import GradioApp
from gr_app import args


demo = gr.Blocks(**args.block)

with demo:
    app = GradioApp()

    warning = gr.Warning()
    gr.Markdown('# Sentient.io - Demand Forecasting')
    gr.Markdown('Demo for demand forecasting pipeline')

    gr.HTML('<hr style="border:2px solid gray">')

    gr.Markdown('# Step 1 - Load Data')
    with gr.Row():
        gr.Markdown('''
                    Use button "Load Demo Data" for a quick demo with pre-loaded data. For uploading your own data, please follow the below requirements.
                    
                    ### Data Requirements:
                    - Time series data have to be in CSV format
                    - Data must contains datetime, y and sku columns. 
                    - Multiple SKUs can put in to same CSV
                    - Time interval in data must be consistent
                    - Missing value have to be filled up
                    ---
                    **Note**: The column "y" is the historical data of the variable that you want to forecast. It can be any parameter in any unit, as long as it is consistent across the same SKU. 
                    ''')

        with gr.Column():
            btn_load_data = gr.Button('Load Demo Data')

            gr.Markdown('------ or ------',
                        elem_classes="demo_app_text_center")

            file_upload_data = gr.File(**args.file_upload_data)

    md_ts_data_info = gr.Markdown()

    df_ts_data = gr.Dataframe(**args.df_ts_data)

    with gr.Accordion('Input Data Visualisation', open=False):
        dropdown_ts_data = gr.Dropdown(**args.dropdown_ts_data)
        plot_ts_data = gr.Plot()
        pass

    gr.HTML('<hr style="border:2px solid gray">')

    gr.Markdown('# Step 2 - Model Selection')

    with gr.Row():
        gr.Markdown('''
                    Train and evaluate model, identify data characteristics and select the best performing model. This step only need to run when the market regime shifted or when need to to re-select the model.
                    
                    - Click "Use Demo Data" Button if the demo data set has been loaded in Step 1
                    - Else, directly proceed to model selection
                    - Only upload dataset if the model select process had been previously done, and you have save a copy of the CSV response. 
                    ''')

        with gr.Column():
            btn_load_model_data = gr.Button('Use Demo Data')
            btn_model_selection = gr.Button(
                'Model Selection', variant='primary')
            gr.Markdown('Upload previous model selection result (if have):')
            file_upload_model_data = gr.File(**args.file_upload_model_data)

    df_model_data = gr.Dataframe()
    file_model_data = gr.File()

    accordion_model_selection = gr.Accordion(
        'Model Selection Visualisation',  open=False, visible=False)

    with accordion_model_selection:
        dropdown_model_selection = gr.Dropdown(**args.dropdown_model_selection)
        plot_model_selection = gr.Plot()

    gr.HTML('<hr style="border:2px solid gray">')

    gr.Markdown('# Step 3 - Forecasting')

    with gr.Row():
        gr.Markdown(
            'This step only can be done when model selection process is completed.')

        with gr.Column():
            gr.Markdown('''
                        ### Forecast Horizon
                        Max horizon will be 20% of provided data range. The unit will be same as the time series data time interval.
                        ''')
            slider_forecast_horizon = gr.Slider(**args.slider_forecast_horizon)

            btn_forecast = gr.Button("Forecast", variant='primary')

            btn_load_demo_result = gr.Button('Load Demo Result')

    df_forecast = gr.Dataframe(**args.df_forecast)
    file_forecast = gr.File()

    with gr.Accordion('Forecasting Result Visualisation',  open=False):
        dropdown_forecast = gr.Dropdown(**args.dropdown_forecast)
        plot_forecast = gr.Plot()

    # ============= #
    # = Functions = #
    # ============= #

    btn_load_data.click(
        app.btn_load_data__click,
        [],
        [df_ts_data,
         df_model_data,
         file_model_data,
         slider_forecast_horizon,
         md_ts_data_info])

    file_upload_data.upload(
        app.file_upload_data__upload,
        [file_upload_data],
        [df_ts_data,
         df_model_data,
         file_model_data,
         slider_forecast_horizon,
         md_ts_data_info])

    file_upload_model_data.upload(
        app.file_upload_model_data__upload,
        [file_upload_model_data],
        [df_model_data, file_model_data]
    )

    btn_load_model_data.click(
        app.btn_load_model_data__click,
        [], [df_model_data, file_model_data]
    )

    btn_model_selection.click(
        app.btn_model_selection__click,
        [],
        [df_model_data,
         file_model_data,
         accordion_model_selection,
         dropdown_model_selection])

    btn_forecast.click(
        app.btn_forecast__click,
        [], [df_forecast, file_forecast, dropdown_forecast]
    )

    btn_load_demo_result.click(
        app.btn_load_demo_result__click,
        [], [df_forecast, file_forecast, dropdown_forecast]
    )

    slider_forecast_horizon.change(
        app.slider_forecast_horizon__update,
        [slider_forecast_horizon],
        [])

    df_ts_data.change(
        app.df_ts_data__change,
        [], [dropdown_ts_data]
    )

    dropdown_ts_data.select(
        app.dropdown_ts_data__select,
        [dropdown_ts_data],
        [plot_ts_data]
    )

    dropdown_forecast.select(
        app.dropdown_forecast__select,
        [dropdown_forecast],
        [plot_forecast]
    )

    dropdown_model_selection.select(
        app.dropdown_model_selection__select,
        [dropdown_model_selection],
        [plot_model_selection])


demo.launch()