Spaces:
Runtime error
Runtime error
File size: 6,803 Bytes
26277ae 247e955 26277ae 247e955 26277ae 247e955 26277ae 247e955 26277ae 247e955 26277ae d051d21 26277ae 247e955 26277ae 247e955 26277ae 247e955 26277ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import os
import gradio as gr
import edge_tts
from pathlib import Path
import inference.infer_tool as infer_tool
import utils
from inference.infer_tool import Svc
import logging
import webbrowser
import argparse
import asyncio
import librosa
import soundfile
import gradio.processing_utils as gr_processing_utils
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces" # limit audio length in huggingface spaces
audio_postprocess_ori = gr.Audio.postprocess
def audio_postprocess(self, y):
data = audio_postprocess_ori(self, y)
if data is None:
return None
return gr_processing_utils.encode_url_or_file_to_base64(data["name"])
gr.Audio.postprocess = audio_postprocess
def create_vc_fn(model, sid):
def vc_fn(input_audio, vc_transform, auto_f0, slice_db, noise_scale, pad_seconds, tts_text, tts_voice, tts_mode):
if tts_mode:
if len(tts_text) > 100 and limitation:
return "Text is too long", None
if tts_text is None or tts_voice is None:
return "You need to enter text and select a voice", None
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
audio, sr = librosa.load("tts.mp3")
soundfile.write("tts.wav", audio, 24000, format="wav")
wav_path = "tts.wav"
else:
if input_audio is None:
return "You need to select an audio", None
raw_audio_path = f"raw/{input_audio}"
if "." not in raw_audio_path:
raw_audio_path += ".wav"
infer_tool.format_wav(raw_audio_path)
wav_path = Path(raw_audio_path).with_suffix('.wav')
_audio = model.slice_inference(
wav_path, sid, vc_transform, slice_db,
cluster_infer_ratio=0,
auto_predict_f0=auto_f0,
noice_scale=noise_scale,
pad_seconds=pad_seconds)
model.clear_empty()
return "Success", (44100, _audio)
return vc_fn
def refresh_raw_wav():
return gr.Dropdown.update(choices=os.listdir("raw"))
def change_to_tts_mode(tts_mode):
if tts_mode:
return gr.Audio.update(visible=False), gr.Button.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True)
else:
return gr.Audio.update(visible=True), gr.Button.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--api', action="store_true", default=False)
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
parser.add_argument("--colab", action="store_true", default=False, help="share gradio app")
args = parser.parse_args()
hubert_model = utils.get_hubert_model().to(args.device)
models = []
voices = []
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
for r in tts_voice_list:
voices.append(f"{r['ShortName']}-{r['Gender']}")
raw = os.listdir("raw")
for f in os.listdir("models"):
name = f
model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device)
cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None
models.append((name, cover, create_vc_fn(model, name)))
with gr.Blocks() as app:
gr.Markdown(
"# <center> Sovits Models\n"
"## <center> The input audio should be clean and pure voice without background music.\n"
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=sayashi.Sovits-Umamusume)\n\n"
"[Open In Colab](https://colab.research.google.com/drive/1wfsBbMzmtLflOJeqc5ZnJiLY7L239hJW?usp=share_link)"
" without queue and length limitation.\n\n"
"[Original Repo](https://github.com/svc-develop-team/so-vits-svc)\n\n"
"Other models:\n"
"[rudolf](https://huggingface.co/spaces/sayashi/sovits-rudolf)\n"
"[teio](https://huggingface.co/spaces/sayashi/sovits-teio)\n"
"[goldship](https://huggingface.co/spaces/sayashi/sovits-goldship)\n"
"[tannhauser](https://huggingface.co/spaces/sayashi/sovits-tannhauser)\n"
)
with gr.Tabs():
for (name, cover, vc_fn) in models:
with gr.TabItem(name):
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else ""
'</div>'
)
with gr.Row():
with gr.Column():
with gr.Row():
vc_input = gr.Dropdown(label="Input audio", choices=raw)
vc_refresh = gr.Button("🔁", variant="primary")
vc_transform = gr.Number(label="vc_transform", value=0)
slice_db = gr.Number(label="slice_db", value=-40)
noise_scale = gr.Number(label="noise_scale", value=0.4)
pad_seconds = gr.Number(label="pad_seconds", value=0.5)
auto_f0 = gr.Checkbox(label="auto_f0", value=False)
tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False)
tts_text = gr.Textbox(visible=False,label="TTS text (100 words limitation)" if limitation else "TTS text")
tts_voice = gr.Dropdown(choices=voices, visible=False)
vc_submit = gr.Button("Generate", variant="primary")
with gr.Column():
vc_output1 = gr.Textbox(label="Output Message")
vc_output2 = gr.Audio(label="Output Audio")
vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0, slice_db, noise_scale, pad_seconds, tts_text, tts_voice, tts_mode], [vc_output1, vc_output2])
vc_refresh.click(refresh_raw_wav, [], [vc_input])
tts_mode.change(change_to_tts_mode, [tts_mode], [vc_input, vc_refresh, tts_text, tts_voice])
if args.colab:
webbrowser.open("http://127.0.0.1:7860")
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share) |