Spaces:
Runtime error
Runtime error
File size: 4,781 Bytes
6086416 26277ae 6086416 4b5c6f0 6086416 26277ae 200bcf6 c2dde5f 6086416 ad0b2b8 c2dde5f 6086416 17b78ec 6086416 26277ae 6086416 11ee98a 4b5c6f0 6086416 4b5c6f0 6086416 c17721a 6086416 1587f86 c17721a 814e97c 6086416 17b78ec 6086416 11ee98a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import os
import io
import gradio as gr
import librosa
import numpy as np
import utils
from inference.infer_tool import Svc
import logging
import soundfile
import argparse
import gradio.processing_utils as gr_processing_utils
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces" # limit audio length in huggingface spaces
audio_postprocess_ori = gr.Audio.postprocess
def audio_postprocess(self, y):
data = audio_postprocess_ori(self, y)
if data is None:
return None
return gr_processing_utils.encode_url_or_file_to_base64(data["name"])
gr.Audio.postprocess = audio_postprocess
def create_vc_fn(model, sid):
def vc_fn(input_audio, vc_transform, auto_f0):
if input_audio is None:
return "You need to upload an audio", None
sampling_rate, audio = input_audio
duration = audio.shape[0] / sampling_rate
if duration > 20 and limitation:
return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
raw_path = io.BytesIO()
soundfile.write(raw_path, audio, 16000, format="wav")
raw_path.seek(0)
out_audio, out_sr = model.infer(sid, vc_transform, raw_path,
auto_predict_f0=auto_f0,
)
return "Success", (44100, out_audio.cpu().numpy())
return vc_fn
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--api', action="store_true", default=False)
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
args = parser.parse_args()
hubert_model = utils.get_hubert_model().to(args.device)
models = []
for f in os.listdir("models"):
name = f
model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device, hubert_model=hubert_model)
cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None
models.append((name, cover, create_vc_fn(model, name)))
with gr.Blocks() as app:
gr.Markdown(
"# <center> Sovits Models\n"
"## <center> The input audio should be clean and pure voice without background music.\n"
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=sayashi.Sovits-Umamusume)\n\n"
"[Open In Colab](https://colab.research.google.com/drive/1wfsBbMzmtLflOJeqc5ZnJiLY7L239hJW?usp=share_link)"
" without queue and length limitation.\n\n"
"[Original Repo](https://github.com/svc-develop-team/so-vits-svc)\n\n"
"Other models:\n"
"[rudolf](https://huggingface.co/spaces/sayashi/sovits-rudolf)\n"
"[teio](https://huggingface.co/spaces/sayashi/sovits-teio)\n"
"[goldship](https://huggingface.co/spaces/sayashi/sovits-goldship)\n"
"[tannhauser](https://huggingface.co/spaces/sayashi/sovits-tannhauser)\n"
)
with gr.Tabs():
for (name, cover, vc_fn) in models:
with gr.TabItem(name):
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else ""
'</div>'
)
with gr.Row():
with gr.Column():
vc_input = gr.Audio(label="Input audio"+' (less than 20 seconds)' if limitation else '')
vc_transform = gr.Number(label="vc_transform", value=0)
auto_f0 = gr.Checkbox(label="auto_f0", value=False)
vc_submit = gr.Button("Generate", variant="primary")
with gr.Column():
vc_output1 = gr.Textbox(label="Output Message")
vc_output2 = gr.Audio(label="Output Audio")
vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0], [vc_output1, vc_output2])
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share) |