Spaces:
Runtime error
Runtime error
File size: 11,402 Bytes
ade0520 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import argparse
import json
import os
import pprint
import json5
import jsonlines
from rouge_score import rouge_scorer
from tqdm import tqdm
from transformers import Agent, AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
from transformers.tools.evaluate_agent import evaluate_agent
from transformers.trainer_utils import set_seed
data_root_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
'data')
def is_callable(response, golden):
return response['action'].strip().lower() == golden['action'].strip(
).lower()
def process_res(response):
# parse response
response += '\n' # fix not-find bug
thought = response[:response.find('Action:')].strip()
action = response[response.find('Action:') +
len('Action:'):response.find('Action Input:')].strip()
action_input = response[response.find('Action Input:') +
len('Action Input:'):response.find('Observation:'
)].strip()
#TODO: This parsing result is incorrect if the response contains multiple Actions. To be fixed in the future.
observation = response[response.find('Observation:') +
len('Observation:'):response.rfind('Thought:'
)].strip()
thought_last = response[response.rfind('Thought:') +
len('Thought:'):response.find('Final Answer:'
)].strip()
final_answer = response[response.find('Final Answer:') +
len('Final Answer:'):].strip()
try:
action_input = json.dumps(json5.loads(action_input),
ensure_ascii=False,
sort_keys=True)
except:
# print("JSON Load Error:", action_input)
pass
res_dict = {
'thought': thought,
'action': action,
'action_input': action_input,
'observation': observation,
'thought_last': thought_last,
'final_answer': final_answer
}
return res_dict
class _DummyTokenizer:
def tokenize(self, text: str):
return text.split()
def _get_tokenized_string(tokenizer, text_list):
token_ids_list, tokenized_string_list = [], []
for text in text_list:
assert tokenizer is not None
token_ids = tokenizer.encode(text)
tokens_bytes = tokenizer.convert_ids_to_tokens(token_ids)
tokens = [
token.decode('utf-8', errors='replace') for token in tokens_bytes
]
tokenized_string = ' '.join(tokens)
token_ids_list.append(token_ids)
tokenized_string_list.append(tokenized_string)
return token_ids_list, tokenized_string_list
def eval_action(job):
response = job['gen'][0]
golden = job['response']
if 'Action:' in response:
response, golden = process_res(response), process_res(golden)
if is_callable(response, golden):
return True
return False
def eval_action_input(job, tokenizer):
response = job['gen'][0]
golden = job['response']
response, golden = process_res(response), process_res(golden)
query = job['prompt']
job = {}
job['prompt'] = query
job['gen'] = response['action_input']
job['response'] = golden['action_input']
job['_gen_tok'], job['_gen_tok_str'] = _get_tokenized_string(
tokenizer, [response['action_input']])
job['_reference_tok'], job['_reference_tok_str'] = _get_tokenized_string(
tokenizer, [golden['action_input']])
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'],
tokenizer=_DummyTokenizer())
score = scorer.score(job['_reference_tok_str'][0], job['_gen_tok_str'][0])
rouge = score['rougeL'].fmeasure
return rouge
class QWenAgent(Agent):
"""
Agent that uses QWen model and tokenizer to generate code.
Example:
```py
agent = QWenAgent()
agent.run("Draw me a picture of rivers and lakes.")
```
"""
def __init__(self,
chat_prompt_template=None,
run_prompt_template=None,
additional_tools=None,
tokenizer=None,
model=None):
if tokenizer and model:
self.tokenizer = tokenizer
self.model = model
else:
checkpoint = 'Qwen/Qwen-7B-Chat'
self.tokenizer = AutoTokenizer.from_pretrained(
checkpoint, trust_remote_code=True)
self.model = AutoModelForCausalLM.from_pretrained(
checkpoint, device_map='auto',
trust_remote_code=True).cuda().eval()
self.model.generation_config = GenerationConfig.from_pretrained(
checkpoint, trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
self.model.generation_config.do_sample = False # greedy
super().__init__(
chat_prompt_template=chat_prompt_template,
run_prompt_template=run_prompt_template,
additional_tools=additional_tools,
)
def generate_one(self, prompt, stop):
# "Human:" 和 "Assistant:" 曾为通义千问的特殊保留字,需要替换为 "_HUMAN_:" 和 "_ASSISTANT_:"。这一问题将在未来版本修复。
prompt = prompt.replace('Human:',
'_HUMAN_:').replace('Assistant:',
'_ASSISTANT_:')
stop = [
item.replace('Human:', '_HUMAN_:').replace('Assistant:',
'_ASSISTANT_:')
for item in stop
]
result, _ = self.model.chat(self.tokenizer, prompt, history=None)
for stop_seq in stop:
if result.endswith(stop_seq):
result = result[:-len(stop_seq)]
result = result.replace('_HUMAN_:',
'Human:').replace('_ASSISTANT_:', 'Assistant:')
return result
def load_models_tokenizer(args):
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path,
trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path,
device_map='auto',
trust_remote_code=True,
bf16=True,
use_flash_attn=True).eval()
model.generation_config = GenerationConfig.from_pretrained(
args.checkpoint_path, trust_remote_code=True)
model.generation_config.do_sample = False # use greedy decoding
return model, tokenizer
def load_jobs(filename):
jobs = []
with jsonlines.open(os.path.join(data_root_path, filename),
mode='r') as reader:
for job in reader:
jobs.append(job)
return jobs
def react_inference(filename, model, tokenizer):
filename_cache = filename + '.cache'
if os.path.exists(os.path.join(data_root_path, filename_cache)):
jobs = load_jobs(filename=filename_cache)
print('Loaded from', filename_cache)
else:
with open(os.path.join(data_root_path, filename_cache), 'w') as f:
jobs = load_jobs(filename=filename)
print('Inference:', filename)
for job in tqdm(jobs):
response, history = model.chat(tokenizer,
job['prompt'],
history=None)
job['gen'] = [response]
f.writelines(json.dumps(job, ensure_ascii=False) + '\n')
print(filename_cache, 'is saved.')
return jobs
def main(args):
print('loading model weights')
if args.checkpoint_path is not None:
model, tokenizer = load_models_tokenizer(args)
else:
model, tokenizer = None, None
print('model loaded')
result = {}
# eval react positive
if args.eval_react_positive:
print('eval react positive ...')
acc_count = 0
rouge_mean = 0
jobs = react_inference(filename=args.eval_react_positive_filename,
model=model,
tokenizer=tokenizer)
for job in jobs:
if eval_action(job):
acc_count += 1
rouge = eval_action_input(job, tokenizer)
rouge_mean += (rouge / len(jobs))
scores = {
'action_right_rate': acc_count / len(jobs),
'action_input_rouge': rouge_mean,
}
result.update({'react_positive': scores})
# eval react negative
if args.eval_react_negative:
print('eval react negative ...')
bad_count = 0
jobs = react_inference(filename=args.eval_react_negative_filename,
model=model,
tokenizer=tokenizer)
for job in jobs:
if '\nAction:' in job['gen'][0]:
bad_count += 1
scores = {'bad_rate': bad_count / len(jobs)}
result.update({'react_negative': scores})
# eval hfagent
if args.eval_hfagent:
print('eval hfagent ...')
agent = QWenAgent(model=model, tokenizer=tokenizer)
scores = evaluate_agent(agent, verbose=False, return_errors=False)
result.update({'hfagent': scores})
pp = pprint.PrettyPrinter(indent=4)
pp.pprint(result)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Test HF checkpoint.')
parser.add_argument('-c',
'--checkpoint-path',
type=str,
help='Checkpoint path',
default='Qwen/Qwen-7B-Chat')
parser.add_argument('-s',
'--seed',
type=int,
default=1234,
help='Random seed')
"""Provide extra arguments required for tasks."""
group = parser.add_argument_group(title='Evaluation options')
group.add_argument('--eval-react-positive',
action='store_true',
default=False,
help='Eval react positive.')
group.add_argument('--eval-react-positive-filename',
type=str,
default='exam_plugin_v1_react_positive.jsonl',
help='Eval react positive filename.')
group.add_argument('--eval-react-negative',
action='store_true',
default=False,
help='Eval react negative.')
group.add_argument('--eval-react-negative-filename',
type=str,
default='exam_plugin_v1_react_negative.jsonl',
help='Eval react negative filename.')
group.add_argument('--eval-hfagent',
action='store_true',
default=False,
help='Eval hfagent.')
args = parser.parse_args()
set_seed(args.seed)
main(args)
|