File size: 8,502 Bytes
ade0520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import pandas as pd
import numpy as np
import argparse
import datasets
import torch

from typing import List
from tqdm import tqdm
from transformers.trainer_utils import set_seed


'''
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar
mkdir data/mmlu
mv data.tar data/mmlu
cd data/mmlu; tar xf data.tar
cd ../../
python eval/evaluate_mmlu.py -d data/mmlu/data/
'''


def load_models_tokenizer(args):
    from transformers import AutoModelForCausalLM, AutoTokenizer
    from transformers.generation import GenerationConfig

    tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval()
    model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
    return model, tokenizer


def format_example(line, include_answer=True):
    example = 'Question: ' + line['question']
    for choice in choices:
        example += f'\n{choice}. {line[f"{choice}"]}'
            
    if include_answer:
        example += '\nAnswer: ' + line["answer"] + '\n\n'
    else:
        example += '\nAnswer:'
    return example


def generate_few_shot_prompt(k, subject, dev_df):

    def format_subject(subject):
        l = subject.split("_")
        s = ""
        for entry in l:
            s += " " + entry
        return s.strip()
    
    prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(format_subject(subject))

    if k == -1:
        k = dev_df.shape[0]
    for i in range(k):
        prompt += format_example(
            dev_df.iloc[i, :],
            include_answer=True,
        )
    return prompt


def get_logits(tokenizer, model, inputs: List[str]):
    input_ids = tokenizer(inputs, padding=False)['input_ids']
    input_ids = torch.tensor(input_ids, device=model.device)

    if input_ids.shape[1] > args.max_seq_len:
        input_ids = input_ids[:, input_ids.shape[1]-args.max_seq_len+1:]
    tokens = {'input_ids': input_ids}

    outputs = model(input_ids)['logits']
    logits = outputs[:, -1, :]
    log_probs = torch.nn.functional.softmax(logits, dim=-1)
    return log_probs, {'tokens': tokens}


@torch.no_grad()
def eval_subject(
        model,
        tokenizer,
        subject_name,
        test_df,
        k=5,
        dev_df=None,
        few_shot=False,
        save_result_dir=None,
        **kwargs
):
    result = []
    score = []

    few_shot_prompt = generate_few_shot_prompt(
        k, subject_name, dev_df) if few_shot else []
    all_probs = {'prob_A': [], 'prob_B': [], 'prob_C': [], 'prob_D': []}
    if args.debug: print(f"few_shot_prompt: {few_shot_prompt}")

    for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
        question = format_example(row, include_answer=False)
        full_prompt = few_shot_prompt + question
        
        output, input_info = get_logits(tokenizer, model, [full_prompt])
        assert output.shape[0] == 1
        logits = output.flatten()

        softval = torch.nn.functional.softmax(
                torch.tensor(
                    [
                        logits[tokenizer(" A")['input_ids']],
                        logits[tokenizer(" B")['input_ids']],
                        logits[tokenizer(" C")['input_ids']],
                        logits[tokenizer(" D")['input_ids']],
                    ]
                ),
                dim=0,
            )
        if softval.dtype in {torch.bfloat16, torch.float16}:
            softval = softval.to(dtype=torch.float32)
        probs = softval.detach().cpu().numpy()

        for i, choice in enumerate(choices):
            all_probs[f'prob_{choice}'].append(probs[i])
        pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)]

        if 'answer' in row:
            correct = 1 if pred == row['answer'] else 0
            score.append(correct)
            if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}')
        result.append(pred)

    if save_result_dir:
        test_df['model_output'] = result
        for i, choice in enumerate(choices):
            test_df[f'prob_{choice}'] = (all_probs[f'prob_{choice}'])
        if score:
            test_df["correctness"] = score
        os.makedirs(save_result_dir, exist_ok=True)
        test_df.to_csv(os.path.join(
            save_result_dir, f'{subject_name}_result.csv'), encoding="utf-8", index=False)

    return score


def cal_mmlu(res):
    acc_sum_dict = dict()
    acc_norm_sum_dict = dict()
    cnt_dict = dict()
    acc_sum = 0.
    cnt = 0
    hard_cnt = 0
    hard_acc_sum = 0.

    for class_ in TASK_NAME_MAPPING.keys():
        acc_sum_dict[class_] = 0.
        acc_norm_sum_dict[class_] = 0.
        cnt_dict[class_] = 0.

        for tt in TASK_NAME_MAPPING[class_]:
            acc_sum += sum(res[tt])
            cnt += len(res[tt])

            acc_sum_dict[class_] += sum(res[tt])
            cnt_dict[class_] += len(res[tt])

    print('\n\n\n', 'total cnt:', cnt, '\n')
    for k in TASK_NAME_MAPPING.keys():
        if k in cnt_dict:
            print('%s ACC: %.2f ' % (
                k, acc_sum_dict[k] / cnt_dict[k] * 100))
    print('AVERAGE ACC:%.2f ' % (acc_sum / cnt * 100))
    

def main(args):
    model, tokenizer = load_models_tokenizer(args)

    dev_result = {}
    for subject_name in tqdm(SUBJECTS):
        # val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv')
        dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv')
        test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv')
        # val_df = pd.read_csv(val_file_path, names=['question','A','B','C','D','answer'])
        dev_df = pd.read_csv(dev_file_path, names=['question','A','B','C','D','answer'])
        test_df = pd.read_csv(test_file_path, names=['question','A','B','C','D','answer'])

        score = eval_subject(model, tokenizer, subject_name, test_df, dev_df=dev_df, k=5, few_shot=True,
                             save_result_dir=f"outs/mmlu_eval_result")
        dev_result[subject_name] = score
    cal_mmlu(dev_result)


TASK_NAME_MAPPING = {'stem': ['abstract_algebra', 'anatomy', 'astronomy', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_physics', 'computer_security', 'conceptual_physics', 'electrical_engineering', 'elementary_mathematics', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_mathematics', 'high_school_physics', 'high_school_statistics', 'machine_learning'],
 'Humanities': ['formal_logic', 'high_school_european_history', 'high_school_us_history', 'high_school_world_history', 'international_law', 'jurisprudence', 'logical_fallacies', 'moral_disputes', 'moral_scenarios', 'philosophy', 'prehistory', 'professional_law', 'world_religions'],
 'other': ['business_ethics', 'college_medicine', 'human_aging', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'nutrition', 'professional_accounting', 'professional_medicine', 'virology', 'global_facts', 'clinical_knowledge'],
 'social': ['econometrics', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_microeconomics', 'high_school_psychology', 'human_sexuality', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy']}
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl]
choices = ["A", "B", "C", "D"]

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Test HF checkpoint.')
    parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B")
    parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed')
    parser.add_argument('--gpu', type=int, default=0, help='gpu id')

    """Provide extra arguments required for tasks."""
    group = parser.add_argument_group(title='Evaluation options')
    group.add_argument('-d', '--eval_data_path', type=str,
                       help='Path to eval data')
    group.add_argument("--max-seq-len", type=int, default=2048,
                       help='Size of the output generated text.')
    group.add_argument("--debug", action='store_true', default=False,
                       help='Print infos.')

    args = parser.parse_args()
    set_seed(args.seed)

    main(args)