File size: 8,519 Bytes
ade0520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import pandas as pd
import numpy as np
import argparse
import datasets
import torch
import re
from thefuzz import process
from typing import List
from tqdm import tqdm
from transformers.trainer_utils import set_seed

'''
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar
mkdir data/mmlu
mv data.tar data/mmlu
cd data/mmlu; tar xf data.tar
cd ../../

pip install thefuzz
python eval/evaluate_chat_mmlu.py -d data/mmlu/data/
'''

def load_models_tokenizer(args):
    from transformers import AutoModelForCausalLM, AutoTokenizer
    from transformers.generation import GenerationConfig

    tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True, bf16=True, use_flash_attn=True).eval()
    model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
    model.generation_config.do_sample = False # use greedy decoding
    return model, tokenizer


def format_example(line):
    example = 'The following is a multiple-choice question. Please choose the most suitable one among A, B, C and D as the answer to this question.\n\n' + line['question'] + "\n"
    for choice in choices:
        example += f'{choice}. {line[f"{choice}"]}\n'
    return example


def process_before_extraction(gen, choice_dict):
    # replace the choice by letter in the generated sentence
    # from longest one to shortest one
    for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
        pattern = re.compile(re.escape(val.rstrip(".")), re.IGNORECASE)
        gen = pattern.sub(key, gen)
    return gen

def extract_choice(gen, choice_list):
    # answer is A | choice is A | choose A
    res = re.search(r"(?:(?:[Cc]hoose)|(?:(?:[Aa]nswer|[Cc]hoice)(?![^ABCD]{0,20}?(?:n't|not))[^ABCD]{0,10}?\b(?:|is|:|be))\b)[^ABCD]{0,20}?\b(A|B|C|D)\b", gen)

    # A is correct | A is right
    if res is None:
        res = re.search(r"\b(A|B|C|D)\b(?![^ABCD]{0,8}?(?:n't|not)[^ABCD]{0,5}?(?:correct|right))[^ABCD]{0,10}?\b(?:correct|right)\b", gen)

    # straight answer: A
    if res is None:
        res = re.search(r"^(A|B|C|D)(?:\.|,|:|$)", gen)

    # simply extract the first appearred letter
    if res is None:
        res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)

    if res is None:
        return choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
    else:
        return res.group(1)

def extract_answer(response, row):
    gen = process_before_extraction(response, {choice: row[choice] for choice in choices})
    pred = extract_choice(gen, [row[choice] for choice in choices])
    return pred

@torch.no_grad()
def eval_subject(
        model,
        tokenizer,
        subject_name,
        test_df,
        save_result_dir=None,
        overwrite=False,
        **kwargs
):
    result_path = os.path.join(save_result_dir, f'{subject_name}_result.csv')
    if not overwrite and os.path.exists(result_path):
        print(f"{result_path} existed, skip!")
        score = []
        for (_, datarow), (_, resultrow) in zip(test_df.iterrows(), pd.read_csv(result_path).iterrows()):
            # pred = extract_answer(resultrow['model_response'], datarow)
            pred = resultrow['model_output']
            correct = 1 if pred == datarow['answer'] else 0
            score.append(correct)
        return score

    result = []
    score = []

    for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
        question = format_example(row)

        response, history = model.chat(
            tokenizer,
            question,
            history=None,
        )
        print(question)
        print(response)
        pred = extract_answer(response, row)
        print(pred)
        print("======================")

        if 'answer' in row:
            correct = 1 if pred == row['answer'] else 0
            score.append(correct)
            if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}')
        result.append(pred)

    if save_result_dir:
        test_df['model_output'] = result
        test_df['model_response'] = response
        if score:
            test_df["correctness"] = score
        os.makedirs(save_result_dir, exist_ok=True)
        test_df.to_csv(os.path.join(
            save_result_dir, f'{subject_name}_result.csv'), encoding="utf-8", index=False)

    return score


def cal_mmlu(res):
    acc_sum_dict = dict()
    acc_norm_sum_dict = dict()
    cnt_dict = dict()
    acc_sum = 0.
    cnt = 0
    hard_cnt = 0
    hard_acc_sum = 0.

    for class_ in TASK_NAME_MAPPING.keys():
        acc_sum_dict[class_] = 0.
        acc_norm_sum_dict[class_] = 0.
        cnt_dict[class_] = 0.

        for tt in TASK_NAME_MAPPING[class_]:
            acc_sum += sum(res[tt])
            cnt += len(res[tt])

            acc_sum_dict[class_] += sum(res[tt])
            cnt_dict[class_] += len(res[tt])

    print('\n\n\n')
    for k in TASK_NAME_MAPPING.keys():
        if k in cnt_dict:
            print('%s ACC: %.2f ' % (
                k, acc_sum_dict[k] * 100 / cnt_dict[k]))
    print('AVERAGE ACC:%.2f ' % (acc_sum *100 / cnt))
    

def main(args):
    print("loading model weights")
    if args.checkpoint_path is not None:
        model, tokenizer = load_models_tokenizer(args)
    else:
        model, tokenizer = None, None
    print("model loaded")

    dev_result = {}
    for subject_name in tqdm(SUBJECTS):
        # val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv')
        # dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv')
        test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv')
        # val_df = pd.read_csv(val_file_path, names=['question','A','B','C','D','answer'])
        # dev_df = pd.read_csv(dev_file_path, names=['question','A','B','C','D','answer'])
        test_df = pd.read_csv(test_file_path, names=['question','A','B','C','D','answer'])

        score = eval_subject(model, tokenizer, subject_name, test_df, save_result_dir=f"outs_chat/mmlu_eval_result", overwrite=args.overwrite)
        dev_result[subject_name] = score
    cal_mmlu(dev_result)


TASK_NAME_MAPPING = {'stem': ['abstract_algebra', 'anatomy', 'astronomy', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_physics', 'computer_security', 'conceptual_physics', 'electrical_engineering', 'elementary_mathematics', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_mathematics', 'high_school_physics', 'high_school_statistics', 'machine_learning'],
 'Humanities': ['formal_logic', 'high_school_european_history', 'high_school_us_history', 'high_school_world_history', 'international_law', 'jurisprudence', 'logical_fallacies', 'moral_disputes', 'moral_scenarios', 'philosophy', 'prehistory', 'professional_law', 'world_religions'],
 'other': ['business_ethics', 'college_medicine', 'human_aging', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'nutrition', 'professional_accounting', 'professional_medicine', 'virology', 'global_facts', 'clinical_knowledge'],
 'social': ['econometrics', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_microeconomics', 'high_school_psychology', 'human_sexuality', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy']}
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl]
choices = ["A", "B", "C", "D"]

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Test HF checkpoint.')
    parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B-Chat")
    parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed')

    """Provide extra arguments required for tasks."""
    group = parser.add_argument_group(title='Evaluation options')
    group.add_argument('-d', '--eval_data_path', type=str,
                       help='Path to eval data')
    group.add_argument("--debug", action='store_true', default=False,
                       help='Print infos.')
    group.add_argument("--overwrite", action='store_true', default=False,
                       help='Overwrite existed results')

    args = parser.parse_args()
    set_seed(args.seed)

    main(args)