Spaces:
Running
Running
File size: 5,932 Bytes
204accd 27ac14f b91f436 5242e1e 204accd 5242e1e 252481a e4f4106 3b8a5dd fac2a29 4c4c85d 7dc970b fac2a29 3b8a5dd 577ae7c 252481a 5242e1e a092b77 5242e1e 252481a 5242e1e b91f436 5d0c781 b91f436 ec98573 262860b a092b77 5242e1e fb91144 976a15b a092b77 5242e1e 5d0c781 5ef15d2 ec98573 e94cac0 b91f436 e94cac0 292ea38 61e9b9a 2ee4558 61e9b9a b91f436 5242e1e a092b77 5242e1e c262e5a 0b7c2d1 5242e1e f32dfca 292ea38 5242e1e b91f436 89ccb7e 224d9a3 b91f436 5242e1e 224d9a3 5242e1e e94cac0 0b7c2d1 b91f436 d0c4f33 5242e1e 377634a 5242e1e ea313d8 9139997 5242e1e 729b352 5242e1e 729b352 2e360ff 5242e1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# 5/1/2024
# This version added saving chat history to a log file (need persist data from a space to a dataset)
# Updated the GPT model to gpt-4
# Add timestamp and ip address
# upgrade llama-index to version 0.10: migrate from ServiceContext to Settings
# 2/23/2024
# This version uses different method in llama index to define llm model
# Removed deprecated classes and replaced with newest dependencies
# Start by setting token and debug mode before starting schedulers
import os
from huggingface_hub import logging, login
# The access token must be saved in the secrets of this space first
#login(token=os.environ.get("new_data_token"), write_permission=True)
#login(token=os.environ.get("data_token")) # this is a new fine_grained token
#login(token=os.getenv("data_token")) # this is a new fine_grained token
login(token=os.getenv("new_data_token"), write_permission=True)
#logging.set_verbosity_debug()
import openai
import json
import gradio as gr
from openai import OpenAI
# rebuild storage context and load knowledge index
from llama_index import StorageContext, load_index_from_storage, LLMPredictor, ServiceContext
from llama_index.llms import OpenAI
# for llama-index 0.10
#from llama_index.core import StorageContext
#from llama_index.core import load_index_from_storage
#from llama_index.llms.openai import OpenAI
#from llama_index.core import Settings
# add datetime and ip to the log file
from datetime import datetime;
import socket;
# access data folder of persistent storage
from pathlib import Path
from huggingface_hub import CommitScheduler
from uuid import uuid4
# generate an unique identifier for the session
session_id = uuid4()
# deprecated (llama-index 0.9)
storage_context = StorageContext.from_defaults(persist_dir='./')
# gpt-3.5-turbo is the current default model
llm = OpenAI(temperature=0.5, model_name="gpt-4")
service_context = ServiceContext.from_defaults(llm=llm)
index = load_index_from_storage(storage_context, service_context=service_context)
# for llama-index 0.10
#Settings.llm = OpenAI(temperature=0.5, model="gpt-3.5_turbo")
#index = load_index_from_storage(storage_context)
class Chatbot:
def __init__(self, api_key, index):
self.index = index
openai.api_key = api_key
self.chat_history = []
# set chat history data path in data folder (persistent storage)
dataset_dir = Path("logs")
dataset_dir.mkdir(parents=True, exist_ok=True)
#self.dataset_path = dataset_dir / f"chat_log_{uuid4()}.json"
self.dataset_path = dataset_dir / f"chat_log_{session_id}.json"
self.scheduler = CommitScheduler(
repo_id="history_data",
repo_type="dataset",
folder_path=dataset_dir,
path_in_repo="data_mis",
)
def generate_response(self, user_input):
query_engine = index.as_query_engine()
response = query_engine.query(user_input)
# generate response
message = {"role": "assistant", "content": response.response}
return message
# do not need this function if use append mode when dump data in file
#def load_chat_history(self):
# try:
# with open(self.dataset_path, 'r') as f:
# self.chat_history = json.load(f)
# except FileNotFoundError:
# pass
def append_chat_history(self, user_input, output):
# create a dictionary for the chat history
#self.chat_history = []
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
#print(dt)
#hostname = socket.gethostname() # this returns server hostname
#ip = socket.gethostbyname(hostname)
client_socket = socket.socket()
client_socket.connect(("huggingface.co",80))
ip = client_socket.getpeername()[0]
#print(ip)
#self.chat_history.append({"role": "datetime", "content": dt})
#self.chat_history.append({"role": "IP", "content": ip})
#self.chat_history.append({"role": "user", "content": user_input})
#self.chat_history.append({"role": "assistant", "content": output})
# save the data in dictionary format
dictionary = {
"datetime": dt,
"ip": ip,
"user": user_input,
"assistant": output
}
self.chat_history.append(dictionary)
def save_chat_history(self):
with self.scheduler.lock:
with self.dataset_path.open("a") as f:
json.dump(self.chat_history, f)
f.write("\n")
def create_bot(user_input):
bot = Chatbot(os.getenv("OPENAI_API_KEY"), index=index)
#bot.load_chat_history();
if user_input:
# use moderations endpoint to check input
client = openai.OpenAI()
response_mod = client.moderations.create(input=user_input)
response_dict = response_mod.model_dump()
flagged = response_dict['results'][0]['flagged']
#print("Flagged:", flagged)
if not flagged:
response_bot = bot.generate_response(user_input)
output = response_bot['content']
else:
output = "Invalid request."
bot.append_chat_history(user_input, output)
bot.save_chat_history()
return output
inputs = gr.components.Textbox(lines=7, label="Ask questions related to the course and its content. For example, what is the assignment late policy, what is a data warehouse, etc.")
outputs = gr.components.Textbox(label="Response")
gr.Interface(fn=create_bot, inputs=inputs, outputs=outputs, title="Virtual TA",
description="This is a virtual learning assistant designed for MIS 340 (Beta version 2.0, powered by GPT-4).\nNote: Chatbot can make mistakes. Consider checking important information."
).launch(share=True)
|