Spaces:
Running
Running
File size: 5,388 Bytes
204accd 27ac14f b91f436 5242e1e 204accd 5242e1e 252481a e4f4106 577ae7c 252481a 5242e1e 1c57d7d 5242e1e ca44462 5242e1e 252481a 5242e1e b91f436 5d0c781 b91f436 ec98573 262860b 5242e1e 204accd 5242e1e 5d0c781 5ef15d2 ec98573 e94cac0 b91f436 e94cac0 292ea38 61e9b9a b91f436 5242e1e ca44462 5242e1e c262e5a 0b7c2d1 5242e1e f32dfca 292ea38 5242e1e b91f436 5242e1e b91f436 5242e1e e94cac0 0b7c2d1 b91f436 d0c4f33 5242e1e 377634a 5242e1e ea313d8 9139997 5242e1e 39c5b57 5242e1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
# 5/1/2024
# This version added saving chat history to a log file (need persist data from a space to a dataset)
# Updated the GPT model to gpt-4
# Add timestamp and ip address
# upgrade llama-index to version 0.10: migrate from ServiceContext to Settings
# 2/23/2024
# This version uses different method in llama index to define llm model
# Removed deprecated classes and replaced with newest dependencies
# Start by setting token and debug mode before starting schedulers
import os
from huggingface_hub import logging, login
login(token=os.environ.get("HF_TOKEN"), write_permission=True)
#logging.set_verbosity_debug()
import openai
import json
import gradio as gr
from openai import OpenAI
# rebuild storage context and load knowledge index
# from llama_index import StorageContext, load_index_from_storage, LLMPredictor, ServiceContext
from llama_index.core import StorageContext
from llama_index.core import load_index_from_storage
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
# add datetime and ip to the log file
from datetime import datetime;
import socket;
# access data folder of persistent storage
from pathlib import Path
from huggingface_hub import CommitScheduler
from uuid import uuid4
# generate an unique identifier for the session
session_id = uuid4()
# deprecated
storage_context = StorageContext.from_defaults(persist_dir='./')
# gpt-3.5_turbo is the current default model
Settings.llm = OpenAI(temperature=0.5, model="gpt-3.5_turbo")
#service_context = ServiceContext.from_defaults(llm=llm_predictor)
#index = load_index_from_storage(storage_context, service_context=service_context)
index = load_index_from_storage(storage_context)
class Chatbot:
def __init__(self, api_key, index):
self.index = index
openai.api_key = api_key
self.chat_history = []
# set chat history data path in data folder (persistent storage)
dataset_dir = Path("logs")
dataset_dir.mkdir(parents=True, exist_ok=True)
#self.dataset_path = dataset_dir / f"chat_log_{uuid4()}.json"
self.dataset_path = dataset_dir / f"chat_log_{session_id}.json"
self.scheduler = CommitScheduler(
repo_id="history_data",
repo_type="dataset",
folder_path=dataset_dir,
path_in_repo="data",
)
def generate_response(self, user_input):
query_engine = index.as_query_engine(llm=llm)
response = query_engine.query(user_input)
# generate response
message = {"role": "assistant", "content": response.response}
return message
# do not need this function if use append mode when dump data in file
#def load_chat_history(self):
# try:
# with open(self.dataset_path, 'r') as f:
# self.chat_history = json.load(f)
# except FileNotFoundError:
# pass
def append_chat_history(self, user_input, output):
# create a dictionary for the chat history
#self.chat_history = []
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
#print(dt)
hostname = socket.gethostname()
ip = socket.gethostbyname(hostname)
#print(ip)
#self.chat_history.append({"role": "datetime", "content": dt})
#self.chat_history.append({"role": "IP", "content": ip})
#self.chat_history.append({"role": "user", "content": user_input})
#self.chat_history.append({"role": "assistant", "content": output})
# save the data in dictionary format
dictionary = {
"datetime": dt,
"ip": ip,
"user": user_input,
"assistant": output
}
self.chat_history.append(dictionary)
def save_chat_history(self):
with self.scheduler.lock:
with self.dataset_path.open("a") as f:
json.dump(self.chat_history, f)
f.write("\n")
def create_bot(user_input):
bot = Chatbot(os.getenv("OPENAI_API_KEY"), index=index)
#bot.load_chat_history();
if user_input:
# use moderations endpoint to check input
client = openai.OpenAI()
response_mod = client.moderations.create(input=user_input)
response_dict = response_mod.model_dump()
flagged = response_dict['results'][0]['flagged']
#print("Flagged:", flagged)
if not flagged:
response_bot = bot.generate_response(user_input)
output = response_bot['content']
else:
output = "Invalid request."
bot.append_chat_history(user_input, output)
bot.save_chat_history()
return output
inputs = gr.components.Textbox(lines=7, label="Ask questions related to the course. For example, when is the due date for Excel Module 9, what is the assignment late policy, how to use NPV function in Excel, etc.")
outputs = gr.components.Textbox(label="Response")
gr.Interface(fn=create_bot, inputs=inputs, outputs=outputs, title="Virtual TA",
description="This is a prototype of learning assistant designed for MIS 320 online section (Version 2.0). Powered by ChatGPT-4.\nNote: ChatGPT can make mistakes. Consider checking important information.",
theme="compact").launch(share=True)
|